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One of the most enduring questions in psychological 
science is why we remember what we do. This question 
is even more complex when applied to children, who 
tend to remember less than adults (Canada et al., 2019; 
Cycowicz et al., 2001; Daugherty et al., 2017; Ngo et al., 
2018, 2019; Ofen et al., 2007; Sprondel et al., 2011). But 
most past work on memory development glosses over 
an interesting feature of children’s memories: Although 
children are generally less likely to form memories than 
adults, many of their individual memories are just as rich 
and complex (Ngo et al., 2019). The question of why 
children form high-quality memories only in select 
moments has not been fully addressed because most 
work averages children’s rich and well-formed memories 
with their many forgotten ones. Here, we ask why chil-
dren form high-quality memories only in select moments 
by exploring the role of a separate aspect of cognition: 
sustained attention (Decker & Duncan, 2020; Honey 
et al., 2017). In adults, attention fluctuates across time 

between focus and inattention to shape online task per-
formance (deBettencourt et al., 2018, 2019; Decker et al., 
2023; Esterman et al., 2013; Fortenbaugh et al., 2018) 
and memory in each moment (Adam & deBettencourt, 
2019; deBettencourt et  al., 2018, 2019; Decker et  al., 
2020). Yet, at present, we know little about how chil-
dren’s attention fluctuates in terms of the length and 
frequency of attentional lapses and even less about how 
these fluctuations govern memory formation from 
moment to moment. Here we address these gaps by 
characterizing the temporal profile of attentional fluctua-
tions and their respective influence on memory across 
development.
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Abstract
Why do children’s memories often differ from adults’ after the same experience? Whereas prior work has focused on 
children’s immature memory mechanisms to answer this question, here we focus on the costs of attentional lapses 
for learning. We track sustained attention and memory formation across time in 7- to 10-year-old children and adults 
(n = 120) to show that sustained attention causally shapes the fate of children’s individual memories. Moreover, 
children’s attention lapsed twice as frequently as adults’, and attention fluctuated with memory formation more closely 
in children than adults. In addition, although attentional lapses impaired memory for expected events in both children 
and adults, they impaired memory for unexpected events in children only. Our work reveals that sustained attention 
is an important cognitive factor that controls access to children’s long-term memory stores. Our work also raises the 
possibility that developmental differences in cognitive performance stem from developmental shifts in the ability to 
sustain attention.
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The idea that children can form high-quality memories— 
but do so less often than adults—was nicely illustrated 
in a study examining children’s memories for multiele-
ment events involving a person, object, and scene (Ngo 
et al., 2019). This study found that if 6-year-olds remem-
bered one association between the elements of the 
event, they were equally as likely as adults to remember 
all of the associations. Children, however, remembered 
fewer events than adults altogether. Thus, although chil-
dren’s memories can be equally as complex as adults’, 
children are less likely to form memories overall. This 
dissociation between children’s sometimes very high-
quality memories and their tendency to form fewer of 
them is difficult to explain by immature memory pro-
cesses alone. Based on work in adults (deBettencourt 
et al., 2018, 2019; Decker & Duncan, 2020; Decker et al., 
2020), fluctuations in attention may explain this dissocia-
tion—switching memory “on” or “off” in each moment.

The hypothesis that fluctuations in sustained attention 
explain children’s memory formation in each moment is 
supported by a rich body of work linking attention to 
memory across individuals. For example, poorer selec-
tive attention correlates with worse memory in childhood 
(Blumberg et al., 2005; Plebanek & Sloutsky, 2019), as 
does poor sustained attention in developmental disor-
ders (Riccio et al., 2007). However, although this body 
of work suggests that sustained attention and memory 
develop in parallel, it remains unclear whether fluctua-
tions in attention causally impact children’s memory on 
a moment-to-moment basis.

Further complicating our ability to predict how atten-
tional fluctuations shape children’s memory is the fact 
that little is known about how children’s attention fluc-
tuates in the first place. Although children display high 
error rates and response-time variability on sustained 
attention tasks (Fortenbaugh et al., 2015), average per-
formance tells us little about how the temporal character 
of sustained attention differs across development. One 
longitudinal study using a fast Fourier transform reported 
that fast (high-frequency) fluctuations in response time 
during a monotonous task decrease from 6 to 11 years 
of age, suggesting more frequent lapses in younger than 
older children (Lewis et al., 2017). However, this study 
did not compare children to adults, verify that these 
fluctuations covaried with task accuracy, or causally link 
them to the likelihood of forming memories.

To fill these gaps, we leveraged a validated approach 
to measure attentional fluctuations across time and 
related them to the fate of children’s individual memo-
ries. The study included young adults (mean age = 18.8 
years, range = 17–29 years; n = 60) and 7- to 10-year-old 
children (mean age = 8.53 years; n = 60), who typically 
perform as well as adults on memory tasks such as ours 

with low strategic attentional demands (Billingsley 
et al., 2002; A. L. Brown & Scott, 1971; Ghetti & Ange-
lini, 2008; Nelson, 1971). Participants first completed a 
sustained attention task in which they categorized trial-
unique images of animals and objects as living or non-
living (Fig. 1a). Critically, 90% of images depicted an 
object (frequent trials), and the remaining 10% depicted 
an animal (infrequent trials); thus, achieving high cat-
egorization accuracy required participants to press the 
same button repeatedly and rarely switch to an infre-
quent response. This repetitive response structure elic-
its fluctuations in attention (deBettencourt et al., 2018; 
Esterman et al., 2013, 2014; Fortenbaugh et al., 2015). 
After the categorization task, participants completed  
a surprise recognition memory test (Fig. 1b) to probe 
memory for each image shown during categorization. 
We then related attentional fluctuations during catego-
rization to later memory to examine how attention  
and memory processes covary across time across 
development.

To preview, children’s attention lapsed twice as fre-
quently as adults, and more time spent lapsing corre-
lated with worse memory performance across children. 
Within children and adults, attention fluctuated to caus-
ally predict memory formation in each moment, such 
that momentary lapses covaried with a lower likelihood 
of forming memories. Importantly, these fluctuations 

Statement of Relevance

Why do children form exceptional memories only 
in select moments? Most prior work has pointed 
to children’s immature memory abilities as an 
answer, but here we explore the role of children’s 
frequent attentional lapses. We report the discov-
ery that moment-to-moment fluctuations in atten-
tion between good and poor states causally 
influence whether children form memories in each 
moment and predict memory formation more in 
children than adults. Moreover, we find that chil-
dren’s attention lapsed in time twice as often as 
adults’, and these lapses hurt memory more in 
children. Our work suggests that sustained atten-
tion acts like a gatekeeper, controlling what “gets 
in” to children’s long-term memory—and the gate 
to memory remains shut more often in children. 
These novel findings raise the possibility that dif-
ferences in sustained attention may explain broad 
differences in cognitive performance and that to 
boost children’s learning we must first help them 
to effectively sustain attention.
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covaried with memory more closely in children than 
adults. Moreover, attentional fluctuations had broader 
consequences on memory in children: Although poor 
attention impaired memory for expected (frequent) 
events in both children and adults, it impaired memory 
for unexpected (infrequent) events in children only. 
These findings suggest that attentional lapses are more 
pervasive and detrimental to learning in childhood.

Open Practice Statement

Data and analysis code have been uploaded to github 
at https://github.com/alexandradecker/lapses-and-
memory-. Stimuli and PsychoPy scripts are available on 
the OSF at https://osf.io/259m4. Statistical tests for chil-
dren (https://Sofio/259m4) and adults (https://osf.io/ 
7tvb4) were preregistered separately on the OSF.

Methods

Participants

Sixty-four children and 64 adults participated. Adults 
were recruited through the University of Toronto 
Department of Psychology subject pool and received 
course credit for participating. Children were recruited 
via outreach activities in and around the Toronto area 
and received a gift card or toy valued at $10 for 

participating. Following preregistered exclusion criteria, 
data from eight participants were excluded because of 
psychiatric illness (n = 2 children, n = 3 adults) and 
memory performance (d′) that fell > 2.5 standard devia-
tions below the mean (n = 2 children, n = 1 adult), 
leaving 60 children (mean age = 8.53 years, range = 
7–10 years; 30 females) and 60 adults (mean age = 18.8 
years, range = 17–29 years; 42 females) in the final 
sample. A power analysis on pilot data (n = 20 adults, 
n = 15 children) indicated that a target sample of 60 
participants per age group would provide at least 80% 
power to detect the observed medium within-subject 
effects (d = 0.53). Participants had normal or corrected-
to-normal vision and reported no history of head 
trauma or neurological or psychiatric illness. Experi-
mental procedures were approved by the local ethics 
committee, and participants or parents provided written 
informed consent/assent.

Stimuli

Stimuli were 69 colored images of unique animals and 
375 colored images of unique inanimate objects (Fig. 
1). Twenty images were used in a practice phase (five 
images of animals), and 424 were used in the experi-
mental session (64 animals). Stimuli were presented on 
a white background on a 13-in. MacBook using Psy-
choPy software (Peirce, 2007).

Categorization Task and Analysis Schematic
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Fig. 1.  Task and analysis schematic. During the categorization task (a), participants viewed 332 images while categorizing 
each as “living” (approximately 10%; infrequent trials) or “nonliving” (approximately 90%; frequent trials). A three-trial mov-
ing average of response time was used to index attentional fluctuations, which were then related to how well participants 
categorized and formed memories about the subsequently presented image. Immediately after the categorization task, par-
ticipants completed a surprise-recognition memory task (b) that tested memory for each image shown during categoriza-
tion. Participants indicated whether each image was “old” (from the categorization task) or “new” and then indicated their 
confidence on a 4-point scale.
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Procedure

Participants completed a sustained-attention task in 
which they categorized trial-unique images as “living” 
or “nonliving” (Fig. 1a). They then performed a surprise 
old/new recognition test that assessed memory for all 
the images presented during the sustained-attention 
task as well as a set of new images (Fig. 1b). Image 
assignment to the “old” condition (images presented in 
the sustained-attention and recognition task) and to the 
“new” condition (images presented only in the recogni-
tion task) was counterbalanced such that each image 
was similarly likely to appear as old or new across 
participants.

Sustained-attention task.  Participants viewed 332 unique 
images that appeared one at a time for 1.5 s in the center 
of a white computer screen (Fig. 1a). Three hundred 
were of inanimate objects (approximately 90%; “fre-
quent” category), and 32 were of animals (approximately 
10%; “infrequent” category). Participants were asked to 
categorize each as “living” (by pressing “k”) or “nonliv-
ing” (by pressing “j”) within the 1.5-s time frame that 
each image was displayed. Images were presented in a 
fully random order across participants. There was no 
intertrial interval. Response mappings were presented 
below each image throughout the task. Participants com-
pleted a practice block of 20 trials before completing the 
primary task.

Surprise-recognition test.  Participants viewed all the 
images shown in the sustained-attention task (n = 332) 
randomly intermixed with a set of new images (32 living, 
60 nonliving; Fig. 1b). After each memory decision, par-
ticipants rated their confidence on a four-point scale (1 = 
just guessing, 2 = not quite sure, 3 = pretty sure, 4 = 100% 
sure). Participants had unlimited time to make decisions.

Metric of individual differences in 
sustained attention across participants

We calculated an individual-differences metric of  
attention—lapse rates—that reflected the proportion of 
trials participants spent in a poor attentional state. To 
calculate lapse rates, we adapted an existing approach 
that labels each trial “in the zone” or “out of the zone,” 
and then we calculated the proportion of trials each 
participant spent out of the zone. This approach, 
adapted from Esterman and colleagues (2013), was 
ideal for our purposes because it allowed us to simul-
taneously capture individual differences in attention 
(i.e., the percentage of trials spent out of the zone) 
while also estimating attentional state on each trial, 
which was used to examine developmental differences 

in the frequency and average length of attentional 
lapses. We used this lapse-rate measure as opposed to 
other existing metrics of attention, such as the coeffi-
cient of variation or the standard deviation of response 
time (RT; Fortenbaugh et al., 2015, 2017; Lewis et al., 
2017) because these latter metrics provide only a single 
aggregate measure of attentional performance per par-
ticipant and do not identify attentional state on each 
trial. Thus, these latter metrics do not allow us to cal-
culate the average length and frequency of lapses 
across participants.

To calculate individual differences in attentional per-
formance, we determined whether each trial reflected 
an attentional lapse before computing lapse rates and 
the length and frequency of lapses. We first linearly 
interpolated RT data for missed and infrequent trial 
responses by averaging across the four surrounding 
trials (two before, two after; Esterman et al., 2013) to 
ensure that infrequent trials, which elicited especially 
slow responses, were not inappropriately labeled out 
of the zone. Following Esterman et al. (2013), we then 
calculated the mean absolute deviance of single-trial 
RT data (how much each RT deviated from that subjects 
mean) and smoothed these values using a gaussian 
kernel, encompassing the four surrounding trials at its 
half maximum (for depictions of raw and smoothed RT 
deviance in a representative adult and child, see Figs. 
2a–2d). Independent pilot data indicated that gaussian 
smoothing captured gradual shifts in attention across 
time, likely by reducing the idiosyncratic effects of spe-
cific trials on RT. We then assigned in-the-zone and 
out-of-the-zone labels to trials on the basis of a particu-
lar RT threshold. The threshold was determined by 
calculating the median of the smoothed variance time 
course (one value per participant) and then computing 
the mean of these values. We assigned out-of-the-zone 
labels to epochs of trials marked by RT deviance higher 
than the threshold and in-the-zone labels to epochs of 
trials marked by RT deviance below the threshold. This 
group threshold was applied to children and adults, 
allowing us to directly compare age groups using the 
same criteria.

After determining the attentional states on each trial, 
we calculated three separate individual-difference met-
rics of sustained attention: an attentional lapse rate 
operationalized as the proportion of trials spent out of 
the zone, the number of attentional lapses operational-
ized as the number of independent streaks of consecu-
tive out-of-the-zone trials, and the median length of 
attentional lapses. We confirmed via two linear regres-
sions (separately for children and adults) that higher 
attentional lapse rates covaried with lower categoriza-
tion accuracy across participants—all participants: b = 
−0.07, SE = 0.007, t(114) = −9.89, p < .001, r = −.68; 
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children: b = −0.09, SE = 0.02, t(57) = −5.36, p < .001, 
r = .58; adults: b = −0.03, SE = 0.009, t(56) = −3.39, p = 
.001, r = .41 (see Fig. 3a). Furthermore, lapse rates cor-
related with the coefficient of variation, a validated 
measure of sustained attention in both age groups (the 

standard deviation of RT divided by the mean RT for 
each participant; Fortenbaugh et al., 2015)—all partici-
pants: b = 0.13, SE = 0.02, t(114) = 6.74, p < .001, r = 
.53; children: b = 0.24, SE = 0.04, t(56) = 6.27, p < .001, 
r = .64; adults: b = 0.19, SE = 0.03, t(56) = 5.88, p < .001; 
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Fig. 2.  Response-time (RT) fluctuations, attentional lapse rates, and categorization accuracy in children and adults. RT across trials 
is plotted for a representative adult (a, blue) and child (b, pink). Smoothed mean absolute RT deviance (c and d) is depicted by 
the thick colored lines for the same participants in (a) and (b), with more saturated colors representing “in the zone” and lighter 
tones representing “out of the zone.” Gray lines depict nonsmoothed mean absolute RT deviance. Red squares indicate catego-
rization errors. Children had (e) higher lapse rates than adults (i.e., the proportion of time spent out-of-the-zone) and (f) worse 
categorization performance (ps < 0.001). Black dots mark individual participant means, and the shape of the violin represents the 
distribution. Yellow arrows mark the child and adult whose data are plotted in (a)–(d) and who have the median attentional lapse 
rate for their age group.
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r = .62 (see Fig. S1A in the Supplemental Material avail-
able online). Lapse rates also correlated with the stan-
dard deviation of RT in both age groups—all participants: 
b = 0.20, SE = 0.006, t(114) = 34.61, p < .001, r = .96; 
children: b = 0.24, SE = 0.01, t(56) = 16.57, p < .001,  
r = .91; adults: b = 0.17, SE = 0.009, t(56) = 17.97, p < 
.001, r = .92 (see Fig. S1B). The convergent validity 
between the lapse-rate metric and these measures 
showcases how lapse rates robustly capture individual 
differences in sustained attention.

Metric of attentional-state fluctuations 
within participants

We operationalized attentional state on each trial as the 
moving average of the mean absolute RT deviance 

across the three preceding trials (N-3, N-2, N-1; for an 
analysis schematic, see Fig. 1a). Prior work shows that 
RT deviance, whether fast or slow, reflects poorer atten-
tion; whereas fast RTs reflect reduced monitoring for 
response-inhibition requirements (Allan Cheyne et al., 
2009), very slow RTs reflect poorer processing of ongo-
ing stimuli, leading to more time required for respond-
ing (Weissman et al., 2006). We confirmed via two linear 
mixed-effects model regressions that the smoothed RT-
deviance measure predicted trial-by-trial accuracy in 
children and adults such that higher deviance led to 
more errors on subsequent trials—children: b = −2.57, 
SE = 0.44, z = −5.88, p < .001; adults: b = −4.39, SE = 
0.63, z = −7.02, p < .001 (Figs. 3d and S7), confirming 
that this measure tracks fluctuations in sustained atten-
tion over time.

90

0.14

−0.70∗∗∗ −0.58∗∗∗

(0.55∗∗∗)

95

100

96

98

98

97

96

95

100

20 40 60
Adults Children

Lapse Rates Shape Categorization
More in Children

Lapse Rates Mediate Categorization
Age Differences 

Lapse Rates Shape Categorization in High
Lapsing Adults

Higher RT Deviance Predicts Worse
Categorization

Lapse Rates (%) 

Lapse Rates (%) 

Ca
te

go
riz

at
io

n 
Ac

cu
ra

cy
 (%

)

Adults

Children

Low Deviance

High Deviance

Low Lapsers 

High Lapsers

Ca
te

go
riz

at
io

n 
Ac

cu
ra

cy
 (%

)

Cl
as

si
fic

at
io

n 
Ac

cu
ra

cy
 (%

)

Lapse Rate
(%)

Age-Group
Categorization

Accuracy

interaction: ns

0 25 50 75

∗∗∗

∗∗∗

a b

c d

Fig. 3.  Relationships between attention and categorization accuracy in children and adults. Individual differences in lapse 
rates correlated with categorization accuracy in both age groups (a), such that higher lapse rates predicted worse categoriza-
tion (ps < 0.001). The relationship was stronger in children (Age × Attentional Lapse Rate: p = 0.025). Shaded gray reflects 95% 
confidence intervals and dots represent individual participant data. Attentional lapse rates fully mediate age-group differences 
in categorization accuracy (b). Standardized coefficients are reported for ease of interpretation. The values in parentheses 
represent the relationship between age and categorization before accounting for lapse rates (total effect), whereas the values 
without parentheses reflect the influence of age on categorization after accounting for lapse rates (direct effect). Higher lapse 
rates correlate with worse categorization accuracy among adults who lapsed most but not least often—high lapsers: p = 0.01; 
low lapsers: p = 0.11 (c). Fluctuations in sustained attention within participants covary with categorization accuracy similarly 
in children and adults, such that higher RT deviance led to a higher error likelihood (ps < 0.001; d). For ease of visualization, 
values of the moving mean deviance time course were assigned to high- and low-deviance labels using a median split within 
subjects. Stars correspond to the significance levels from models reported in the text. Means and standard error bars are plotted.
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Indexing memory performance

We used d′ = z(hit rate) – z(false-alarm rate) to measure 
individual differences in memory performance on the 
surprise-recognition test. Low-confidence hits and false 
alarms were excluded from the measure (confidence 
ratings of 1 or 2) to remove guesses. If a participant 
had a hit rate of 1 or false-alarm rate of 0, we adjusted 
the calculation (adjusted hit rate: N/N + 1; adjusted 
false-alarm rate: 1/N + 1), where N is the total number 
of trials included in the calculation. In addition to cal-
culating d′ across all trials, we calculated each partici-
pant’s d′ separately for images from the frequent and 
infrequent category.

To index fluctuations in memory formation across 
time, we used memory hits across trials. For within-
participant analyses, memory hits were operationalized 
as high-confidence old responses to an old image (con-
fidence ratings of 3 or 4), and misses were considered 
new responses to an old image.

Data transformations

Age group, accuracy, trial type, and memory hits were 
effect-coded or dummy-coded (children = −0.5, adults = 
0.5; correct = 1, error = 0; infrequent = −0.5, frequent = 
0.5; hit = 1, miss = 0). Attentional lapse rates were mean-
centered before fitting models. Linear drift in RT resulting 
from time-dependent effects (e.g., practice and fatigue) 
was removed by extracting residuals from a model pre-
dicting RT from the trial number for each participant. 
Residuals were used in place of raw RT in analyses.

Statistical analysis

Statistical analyses were performed in the R program-
ming environment (Version 3.6.3; R Core Team, 2013). 
Three participants were excluded from between-subject 
analyses because of low categorization accuracy (n = 
1 adult, n = 1 child) and high attentional-lapse rates (n = 
1 adult) that fell > 2.5 standard deviations from the 
sample mean. Although we did not preregister exclud-
ing participants for particularly low categorization 
scores or low lapse rates, we excluded these three 
participants to avoid biasing our results, although their 
exclusion did not change our results. These participants 
were retained for within-subject analyses examining 
how attentional fluctuations shape concurrent catego-
rization and memory performance.

To test within-subject predictions, we used general 
linear mixed-effects or logistic-regression models (glmer 
and lmer function in the lme4 packages; Bates et al., 
2015), and the lmerTest package was used to obtain  
p values using Satterthwaite’s degrees of freedom. These 

models included random slopes nested within partici-
pants for within-subject repeated-measures variables 
that were included as fixed effects. Random intercepts 
were also modeled for each participant, and the full 
covariance in the random-effects structure was modeled. 
In the case that a model did not converge on a param-
eter estimation (V. A. Brown, 2021) we used the “bobyqa” 
optimizer that balances processing time and getting a 
valid convergence, increased the number of iterations, 
and forced the correlations among random effects to be 
zero to reduce the computational complexity.

Examining developmental differences 
in attention and memory performance

We fit three t tests to assess whether children and adults 
differed in the rate, duration, or frequency of attentional 
lapses (for additional permutation analyses focusing on 
age-group differences in lapse frequency and duration, 
see Analysis S1 in the Supplemental Material) and two 
linear mixed-effects regression models to explore 
whether mean categorization or memory performance 
(d′) differed by age group (Tables S1 and S12 in the 
Supplemental Material). In these models, trial type and 
age group were included as covariates and interaction 
terms. In the case of significant Age × Trial Type inter-
actions, we used linear models to uncover age-group 
differences separately for each trial type (Tables S2, S3, 
S13, and S14).

Relating individual differences in 
lapse rates to categorization accuracy 
and memory performance

We fit two linear mixed-effects regression models to 
probe whether lapse rates influenced categorization or 
memory performance (d′) more strongly in children 
than adults and whether the influence of lapses differed 
by trial type. Therefore, attentional lapse rate, age 
group, and trial type were included as covariates and 
interaction terms to assess the presence of two- and 
three-way interactions. Linear regressions were used to 
unpack simple slopes from significant interactions. In 
the case that trial type did not moderate the effect of 
lapse rates, trial type was removed from the models, 
and we fit regressions that collapsed across trial types 
(Tables S4–S8 and S16–S18). To confirm that the rela-
tionship between attention and memory performance 
generalized across other validated metrics of sustained 
attention, we refit the models above relating attention 
to memory performance using alternative metrics of 
attention—in particular, the coefficient of variation and 
the standard deviation of RT. The results from these 



1384	 Decker et al.

models are reported in Analysis S2 and reveal patterns 
that are largely consistent with those reported here.

We also fit three mediation models to test whether 
sustained attention mediated age differences in catego-
rization. One model included all trials (collapsed across 
trial type), and the two other models investigated age 
differences on frequent and infrequent trials separately. 
The direct and indirect effects of age group on catego-
rization performance were modeled using linear regres-
sions. In these models, we fit 5,000 bootstrap iterations 
to provide stable estimates of the direct, indirect, and 
total effects. We report 95% confidence intervals and 
intervals that did not include zero were considered 
statistically significant.

Relating fluctuations in sustained 
attention to trial-by-trial shifts  
in categorization accuracy and  
memory formation

We tested whether fluctuations in RT deviance covaried 
with categorization accuracy or memory hits more 
strongly in children than adults (for an analysis sche-
matic, see Fig. 1a). Categorization accuracy and mem-
ory hits served as dependent variables in separate 
models, and preceding RT deviance, trial type, age 
group, and their interaction were modeled as predictors 
(Tables S11 and S21).

Results

In reporting our results, we first characterize develop-
mental differences in the temporal dynamics of sustained 
attention—namely, the total time participants spent laps-
ing (i.e., the attentional lapse rate; Figs. 2a–2d) and the 
length and frequency of attentional lapses. We then 
describe how individual differences in sustained atten-
tion, as well as fluctuations in sustained attention across 
time, shape categorization accuracy and memory forma-
tion. In describing both relationships, we first focus on 
relationships with categorization performance followed 
by relationships with memory formation.

Children’s attention lapsed twice  
as frequently as adults’

Children had higher lapse rates than adults, and their 
lapses were longer and more frequent—age differences 
in lapse rates: t(115) = 10.65, p < .001, r = .70; lapse 
length: t(78) = 7.05, p < .001, r = .62; lapse frequency: 
t(101) = 4.10, p < .001, r = .38 (Figs. 2e and S2A and 
S2B). Permutation testing revealed that children’s more 
frequent lapses were not a by-product of their greater 
time spent lapsing overall (i.e., higher lapse rates). 

However, children’s longer lapses were not indepen-
dent of their higher lapse rates (see Analysis S1 and 
Figs. S3A and S3B). Thus, what look like longer lapses 
in childhood could simply reflect the higher probability 
of children being out of the zone in the first place. 
Immature sustained attention may therefore be best 
characterized by more frequent lapses rather than a 
tendency to get stuck in them.

Children’s higher lapse rates underlie 
their lower categorization performance

Children had worse categorization accuracy than adults, 
b = 0.06, SE = 0.01, t(118) = 5.22, p < .001 (Fig. 2f and 
Table S1). This was particularly true for the attentionally 
demanding infrequent trials—Age × Trial Type: b = 
−0.09, SE = 0.02, t(118) = −4.07, p < .001; age difference 
on frequent trials: b = 0.02, SE = 0.002, t(115) = 7.28, 
p < .001, r = .56; age difference on infrequent trials:  
b = 0.10, SE = 0.02, t(115) = 4.69, p < .001, r = .40 (Figs. 
S4A and S4B and Tables S2 and S3).

In general, individual differences in lapse rates corre-
lated with categorization accuracy across the sample, such 
that higher lapse rates were associated with worse catego-
rization, b = −0.12, SE = 0.03, t(113) = −3.49, p < .001. 
However, lapse rates and categorization accuracy were 
more correlated in children than adults—Age × Attentional 
Lapse Rate: b = 0.16, SE = 0.07, t(113) = 2.27, p = .025 (Fig. 
3a and Table S4). This age-group difference was margin-
ally larger when considering accuracy on infrequent  
trials—Age × Attentional Lapse Rate × Trial Type: b = 
−0.25, SE = 0.13, t(113) = −1.86, p = .063. Indeed, higher 
lapse rates were linked to lower categorization accuracy 
on infrequent trials in children only—frequent trials in 
children: b = −0.06, SE = 0.01, t(57) = −5.56, p < .001, 
r = .59; frequent trials in adults: b = −0.03, SE = 0.004, 
t(56) = −6.54, p < .001, r = .66; infrequent trials in children: 
b = −0.34, SE = 0.11, t(57) = −3.09, p = .003, r = .38; infre-
quent trials in adults: b = −0.06, SE = 0.08, t(56) = −0.73, 
p = .470, r = .10; Figs. S6A and S6B and Tables S5–S8). 
This may have been because infrequent trials captured 
adults’ attention, rescuing performance. Notably, chil-
dren’s higher lapse rates also mediated age differences in 
categorization accuracy (Fig. 3b and Analysis S3), high-
lighting that these lapses explain developmental differ-
ence in categorization performance.

To explore whether individual differences in lapse 
rates influenced categorization accuracy more in chil-
dren simply because they lapsed more frequently than 
adults, we tested whether higher lapse rates impaired 
accuracy in adults who lapsed a lot (i.e., who were 
most like children) versus adults who lapsed less. Using 
an unbiased approach to partitioning adults into a high- 
and low-lapse group with k-means clustering (Analysis 
S6), we found that high lapse rates correlated with  



Psychological Science 34(12)	 1385

low accuracy only in adults who lapsed most often—
high-lapse group: b = −0.07, SE = 0.02, t(30) = −2.72,  
p = .011, r = .44; low-lapse group: b = −0.04, SE = 0.02, 
t(24) = −1.64, p = .114, r = .32 (Fig. 3c and Tables S9 
and S10). This exploratory result raises the possibility 
that individual differences in attention are not inherently 
more correlated with categorization accuracy across 
children, but the relationship may be more pronounced 
in groups with the highest lapse rates.

Within-participant fluctuations in 
attention shape categorization accuracy 
similarly in children and adults

In general, within-subject attentional fluctuations covar-
ied with categorization accuracy across time: RT devi-
ance was higher before errors than correct responses 
(b = −2.95, SE = 0.40, z = −7.42, p < .001; for an analysis 
schematic, see Fig. 1a). This relationship was stronger 
when considering frequent compared with infrequent 
trials (RT Deviance × Trial Type: b = −2.17, SE = 0.71, 
z = −3.04, p = .002; frequent trials: b = −3.98, SE = 0.49, 
z = −8.20, p < .001; infrequent trials: b = −1.88, SE = 
0.58, z = −3.22, p = .001), possibly because infrequent 
trials interrupted endogenous attentional fluctuations. 
Fluctuations in attention within participants also shaped 
categorization accuracy to a similar extent in children 
and adults (Age × RT Deviance: b = −1.10, SE = 0.79,  
z = −1.39, p = .165; Age × RT Deviance × Trial Type:  
b = −2.15, SE = 1.41, z = −1.52, p = .128; Figs. 3d and 
S7 and Table S11). Thus, attentional fluctuations across 
time had similar detrimental consequences on catego-
rization accuracy across development.

Equivalent memory performance  
in children and adults

Memory performance (d ′) did not reliably differ in  
children and adults, similar to prior studies using a  
surprise-recognition memory test in this age range, b = 
0.11, SE = 0.08, t(115) = 1.28, p = .202 (Fig. S8A and 
Table S12; Billingsley et al., 2002; A. L. Brown & Scott, 
1971; Ghetti & Angelini, 2008; Ngo et al., 2018). More-
over, similar to prior work (deBettencourt et al., 2018), 
memory was better for the infrequent compared with 
frequent category, b = −0.38, SE = 0.05, t(115) = −7.05, 
p < .001 (Fig. S8 and Table S12). Adults experienced a 
stronger boost in memory for the infrequent category 
of images than children—Age × Trial Type: b = −0.22, 
SE = 0.11, t(115) = −2.03, p = .044; trial type differences 
in adults: b = −0.48, SE = 0.09, t(114) = −5.46, p < .001, 
r = .46; trial type differences in children: b = −0.27, SE = 
0.11, t(116) = −2.49, p = .014, r = .23 (Figs. S8B and S8C 
and Tables S12–S14). For a a breakdown of memory d ′ 
by attentional state, see Table S16. Notably, the overall 

lack of age difference in memory was ideal for allowing 
us to probe the influence of sustained attention on 
memory formation in the context of equivalent memory 
across age groups.

High lapse rates impair memory across 
children and adults who lapse often

Individual differences in lapse rates correlated with 
memory performance to a similar extent on frequent 
and infrequent trials. We therefore collapsed across trial 
type in our models— Attentional Lapse Rate × Trial 
Type: b = −0.36, SE = 0.35, t(113) = −1.03, p = .306; 
Attentional Lapse Rate × Trial Type × Age Group: b = 
0.80, SE = 0.70, t(113) = 1.14, p = .256 (Table S15). We 
found that, across the sample, higher lapse rates mar-
ginally correlated with lower memory performance, b = 
−0.49, SE = 0.29, t(113) = −1.72, p = .087, r = .16 (Fig. 
4A and Table S1). This relationship was similar across 
age groups—Age Group × Attentional Lapse Rate: b = 
0.76, SE = 0.57, t(113) = 1.33, p = .186, r = .12 (Table 
S16). However, higher lapse rates were only related to 
worse memory in children and adults with the highest 
lapse rates—children: b = −0.87, SE = 0.38, t(57) = −2.32, 
p = .024, r = .29; all adults: b = −0.11, SE = 0.43, t(56) = 
−0.26, p = .796, r = .03; high-lapse group of adults: b = 
−1.98, SE = 0.92, t(30) = −2.15, p = .040, r = .37 (Figs. 
4a and 4b). This relationship was not observed among 
adults who lapsed the least, b = −0.42, SE = 1.67, t(24) = 
−0.25, p = .801, r = .05 (Figs. S9 and S10, Analysis S6, 
and Tables S17–S20). For mean memory d ′ listed by 
age group and zone state, see Table S21. These findings 
suggest that individual differences in lapse rates covary 
with memory among those with the poorest ability to 
sustain attention—in our study children and adults with 
high lapse rates.

Fluctuations in sustained attention 
shape memory formation across time 
more in children than adults

We next turned to our critical question about how 
within-subject attentional fluctuations across time 
shaped memory formation in children from moment to 
moment. Across the sample, fluctuations in sustained 
attention covaried with memory formation across time, 
mirroring results for categorization accuracy: RT devi-
ance was higher before images that were later forgotten 
than remembered (b = −0.70, SE = 0.28, z = −2.47, p = 
.013; Table S22). Interestingly, these fluctuations in 
attention covaried with memory formation more closely 
in children than adults (RT Deviance × Age: b = 1.78, 
SE = 0.56, z = 3.19, p = .001; Table S22). This closer 
intrinsic relationship between fluctuating attentional 
states and memory formation in children was most 
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prominent on infrequent trials (RT Deviance × Age × 
Trial Type: b = −3.27, SE = 1.11, z = −2.93, p = .003). 
Indeed, whereas momentary attentional lapses reduced 
the likelihood of memory formation on frequent trials 
in both age groups similarly (Attention × Age: b = 0.15, 
SE = 0.33, z = 0.44, p = .661; children: b = −0.80, SE = 
0.20, z = −4.00, p < .001; adults: b = −0.64, SE = 0.29,  
z = −2.17, p = .030; Fig. 4D), they reduced the likelihood 
of memory formation on infrequent trials in children 
only (RT Deviance × Age on infrequent trials: b = 3.44, 
SE = 1.14, z = 3.01, p = .003; attention-memory relation-
ship on infrequent trials in children: b = −2.53, SE = 
0.68, z = −3.71, p < .001). In contrast, periods of poorer 
attention were numerically linked to better memory in 
adults, although this effect did not reach statistical  
significance (b = 2.05, SE = 1.16, z = 1.76, p = .079;  
Fig. 4c and Table S22). Control analyses reported in  
the Supplemental Material demonstrate that these 

relationships were not a result of parallel declines in 
attention and memory performance across the task 
(Analysis S7). Thus, although momentary attentional 
fluctuations had similar consequences for categorization 
performance across development, they had a more per-
vasive influence on memory formation in children. That 
is, in children, fluctuations in attention even shaped the 
fate of memories for unexpected events that were resil-
ient to the influence of attentional lapses in adults.

Discussion

We showed that limits on children’s ability to form mem-
ories reflect not only immature memory mechanisms 
but also momentary attentional lapses. Seven- to 10-year-
old children’s attention lapsed twice as frequently as 
adults’, which mediated age-group differences in catego-
rization accuracy. Lapse rates also correlated with worse 
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memory in children and adults who lapsed the most. 
Furthermore, within-subject fluctuations in attention 
covaried with memory formation more closely in chil-
dren than adults, causally implicating attentional fluc-
tuations in children’s memory formation. However, 
although attentional lapses impaired memory for 
expected (frequent) events in both groups, they 
impaired memory only for unexpected (infrequent) 
events in children. Children’s memories therefore 
appear less resilient to attentional lapses.

Memory performance did not differ between groups. 
These findings align with research showing that chil-
dren’s memory approximates adults’ by roughly age 8, 
at least when memories are formed unintentionally 
(Ofen, 2012; Shing et al., 2008, 2010). In some cases, 
children can even have better memory than adults on 
surprise-recognition tasks (Fisher & Sloutsky, 2005; 
Sloutsky & Fisher, 2004). The absence of an age differ-
ence was ideal for comparing attention’s influence with-
out accounting for developmental differences in 
memory. Moreover, our task was ideal for our purposes: 
It was straightforward for children and led to attentional 
lapses, and the recognition memory test minimized 
demands on strategic attention (Shing et  al., 2008, 
2010), decreasing barriers to retrieving well-formed 
memories.

The similar memory performance across groups may 
seem surprising given attention lapsed more frequently 
in children. One explanation is that children form mem-
ories quite well, possibly better than adults, during 
optimal attentional states. If so, children’s impressive 
memory abilities while focused could offset the nega-
tive effects of higher lapse rates, leading to comparable 
memory between groups. Supplementary analyses 
(Table S21) indeed showed that children formed memo-
ries numerically better than adults while focused, with 
the group difference statistically trending when consid-
ering high- and low-confidence memories. Children’s 
poor attention may therefore mask their true memory 
potential. But why might children form memories so 
well while in the zone? Perhaps children’s impressive 
memory abilities reflected heightened motivation aris-
ing from the novelty of participating in an experiment 
(Duan et al., 2020). Relatedly, the categorization task 
may have been optimally challenging for children but 
too easy for adults—leading to greater processing 
demands in children, which enhances memory forma-
tion (Sungkhasettee et al., 2011).

Turning to important developmental differences in 
attention, we showed that attention fluctuated less often 
in adults than children. This finding extends research 
showing a reduction in attentional fluctuations from 
early to late childhood (Lewis et al., 2017). Interestingly, 
however, children’s lapses did not last longer than 
adults. Thus, children reengaged as readily as adults.

But our primary question was neither about devel-
opmental differences in attention nor memory on their 
own; it was about how fluctuations in attention shape 
the fate of children’s individual memories. After estab-
lishing a clear and causal relationship linking attention 
to memory across time, pressing questions arise about 
whether attentional fluctuations similarly influence 
other more attentionally demanding memories. For 
example, intentional memory formation for items or 
associations, or even retrieving information from a cue, 
require greater strategic control and are precisely the 
types of memories that are late to develop (Shing et al., 
2008, 2010). Future work could therefore test whether 
our results generalize when greater demands are placed 
on strategic attention, such as when memories are 
formed intentionally. If attentional lapses also explain 
memory for complex and attentionally demanding 
forms of memory, then young children may be far more 
capable of forming memories than we think—at least 
in a good attentional state.

We also observed that attention fluctuations covaried 
with memory more closely in children than adults. 
Moreover, although lapses impaired memory for 
expected events in both groups, they impaired memory 
for unexpected events (infrequent trials) only in chil-
dren. Perhaps adults rapidly reoriented to infrequent 
trials on noticing the need for response inhibition—
even during a lapse—which would have rescued mem-
ory. In contrast, children may have reoriented more 
slowly to infrequent trials during a lapse. This hypoth-
esis is partly supported by our data showing that chil-
dren’s memory and categorization accuracy was 
particularly worse than adults’ on infrequent trials, sug-
gesting that children struggled more to orient to these 
trials.

Still, we note that lapses can impair adults’ memory 
for infrequent events in past research (deBettencourt 
et al., 2018). We offer two explanations for our diver-
gent findings. First, we included a longer stimulus dura-
tion (1.5 vs. 1 s in prior work), which may have left 
adults with more time to reengage on noticing an infre-
quent trial, reducing the preceding poor attentional 
state’s influence. Second, we used images of animals 
as the infrequent category (rather than scenes). If ani-
mals are particularly salient to adults, this could have 
heightened memory regardless of attentional state. 
Future work could manipulate the stimulus duration 
and image categories to adjudicate these possibilities.

An important strength of our study was its focus on 
how attention covaried with memory across and within 
individuals—and these relationships sometimes dif-
fered. Attentional fluctuations covaried with memory 
within adults, but time spent lapsing did not correlate 
with memory across adults. Splitting adults into groups 
of more versus less frequent lapsers reconciled this 
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discrepancy. High lapse rates impaired memory only 
among adults whose attention lapsed the most. Thus, 
a few lapses may not harm memory in those who lapse 
infrequently.

In summary, we showed that moment-to-moment 
attentional fluctuations powerfully govern the fate of 
children’s memories, tuning memory formation up or 
down in each moment. Memory failures in childhood do 
not simply stem from immature memory mechanisms—
the focus of prior work—but also immature sustained 
attention. More broadly, our work suggests that sustained 
attention acts like a “gatekeeper,” controlling what 
enters long-term and even working memory stores 
(deBettencourt et al., 2019). And what “gets through the 
gate” might differ in children—not only because of their 
frequent attention lapses but also because of the more 
detrimental consequences of these lapses. Our findings 
raise the possibility that broad developmental differences 
in cognitive performance stem from the same factor—the 
ability (or lack thereof) to sustain attention.
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