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Abstract
Attentional lapses have been found to impair everything from basic perception to learning and memory. Yet, despite the 
well-documented costs of lapses on cognition, recent work suggests that lapses might unexpectedly confer some benefits. 
One potential benefit is that lapses broaden our learning to integrate seemingly irrelevant content that could later prove 
useful—a benefit that prior research focusing only on goal-relevant memory would miss. Here, we measure how fluctua-
tions in sustained attention influence the learning of seemingly goal-irrelevant content that competes for attention with target 
content. Participants completed a correlated flanker task in which they categorized central targets (letters or numbers) while 
ignoring peripheral flanking symbols that shared hidden probabilistic relationships with the targets. We found that across 
participants, higher rates of attentional lapses correlated with greater learning of the target–flanker relationships. Moreover, 
within participants, learning was more evident during attentional lapses. These findings address long-standing theoretical 
debates and reveal a benefit of attentional lapses: they expand the scope of learning and decisions beyond the strictly relevant.
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Introduction

The ability to focus attention while ignoring distractions 
benefits nearly every cognitive ability, including learning 
and memory (Awh et al., 2008; Madore et al., 2020), per-
ception (Shomstein et al., 2019; Sun et al., 2018), and cat-
egorization (Deng & Sloutsky, 2016). Performance in each 
domain, however, is compromised by an inconvenient prop-
erty of attention—it fluctuates over time, leading to periodic 
attentional lapses (Esterman & Rothlein, 2019; Mackworth, 

1948). These lapses may simply reflect hard limits on cog-
nitive abilities, like having to take a breather in a race. An 
intriguing alternative, however, is that lapses have unex-
pected benefits. One possible benefit is that they broaden 
the focus of our minds to support learning of that which is 
peripheral to the task at hand (see Amer et al., 2016; Decker 
& Duncan, 2020; Thompson-Schill et al., 2009 for related 
arguments). Unfortunately, most sustained attention studies 
do not measure learning, let alone for content that is not 
strictly goal-relevant, leaving us to wonder whether there 
may be some benefit to this otherwise limiting aspect of 
human cognition. The present investigation therefore lever-
ages recent methodological advances (e.g., deBettencourt 
et al., 2019; Esterman et al., 2012) to track fluctuations in 
sustained attention on a moment-by-moment basis and then 
relate these attentional states to the learning and use of infor-
mation that is not strictly relevant.

Existing theories of sustained attention make differ-
ent predictions about how attentional fluctuations could 
influence learning of distracting information. On the one 
hand, overload (or depletion) theories propose that sus-
taining attention consumes the pool of cognitive resources 
shared across domains (Schooler et al., 2011; Smallwood, 
2010; Smallwood & Schooler, 2006). Accordingly, they 
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predict that attentional lapses, which mark the deple-
tion of resources, should co-occur with the decline and 
expression of learning for both goal-relevant and goal-
irrelevant information. On the other hand, “underload 
theories” (Esterman et al., 2012; Fortenbaugh et al., 2017; 
Thomson et al., 2015) raise the possibility that attentional 
lapses promote learning of goal-irrelevant content. They 
posit that what appears to be a lapse in attention is often 
a diversion of attentional resources when the task at hand 
becomes too monotonous (Manly et al., 1999; Smallwood 
& Schooler, 2006). Across different versions of underload 
theories, attention is proposed to move to internally-gen-
erated thoughts (mind wandering: Ariga & Lleras, 2011; 
Robertson et al., 1997; Schooler et al., 2011; Smallwood 
& Schooler, 2006), nowhere (i.e., a mindless state: Forten-
baugh et al., 2017), or (critically) outward toward non-
target content (Lavie et al., 2004; Mittner et al., 2016). 
Thus, lapses in attention could shift processing resources 
from information that is strictly relevant to that which is 
less relevant to one’s current goals.

Consistent with overload hypotheses, attentional lapses 
are associated with impairments in goal-relevant memory 
(DeBettencourt et al., 2018; Decker et al., 2020; Decker & 
Duncan, 2020). Furthermore, neural processing of goal-
irrelevant stimuli decreases during attentional lapses 
compared to periods of focused attention (Esterman et al., 
2014). While this work raises the possibility that lapses 
decrease learning of target and non-target content, mem-
ory for non-target content was not assessed in this study 
leaving the implications for learning unknown. However, 
related research investigating individual differences in 
cognitive control—a precursor to being able to sustain 
attention—finds that age groups known to have lower cog-
nitive control tend to learn more about distractors, such 
as older adults (Amer & Hasher, 2014; Biss et al., 2018; 
Campbell et al., 2010; Campbell et al., 2012; Kim et al., 
2007; Rowe et al., 2006; Schmitz et al., 2010; Weeks et al., 
2016) and children (Deng & Sloutsky, 2016; Plebanek & 
Sloutsky, 2017). Further, younger adults show improved 
distractor learning during off-peak times of day when they 
have low cognitive control (Ngo et al., 2018). And in a 
final key example, a correlated flanker paradigm was used 
to show that younger adults with high trait impulsivity—a 
trait associated with low control (Cools et al., 2007; Logan 
et al., 1997)—were better at learning the relationships 
between flankers (which they were instructed to ignore) 
and goal-relevant targets than those with low impulsivity 
(Landau et al., 2012).

Thus, a substantial body of evidence suggests that traits 
associated with poorer control of attention confer benefits 
for learning information beyond what is strictly relevant. 
However, how distractor learning relates to individual dif-
ferences in sustained attention per se, rather than associated 

traits, remains to be determined. Further, jointly mapping the 
temporal dynamics of distractor learning to sustained atten-
tion within a person will get us closer to understanding the 
unexpected benefits of attentional lapses by determining if 
attentional lapses boost learning about information that lies 
beyond our narrow goals.

The current project seeks to address these ideas by lev-
eraging recent methodological developments that make it 
possible to track trial-by-trial fluctuations in attention—
within individuals (DeBettencourt et al., 2018; deBetten-
court et al., 2019; Riley et al., 2017)—and relate them to 
learning about seemingly goal-irrelevant content. To this 
end, we asked young adults (n = 53) to complete a vari-
ant of the correlated flanker paradigm (Carlson & Flow-
ers, 1996; Landau et al., 2012; Miller, 1987) (Fig. 1A), 
in which they categorized a central target (letter or num-
ber) while ignoring a pair of flanking distractor symbols, 
which, unbeknownst to participants, shared a probabilis-
tic relationship with targets. We then measured learning 
for the target–flanker pairings and attentional fluctuations 
over time to examine the relationship between distractor 
learning and attention within participants. We hypothe-
sized that within individuals, evidence of learning would 
be strongest during lapses in sustained attention. Compli-
menting these primary within-subject analyses, we predict 
that across individuals, poorer sustained attention would 
correlate with greater evidence of learning about the tar-
get–flanker pairings.

Methods

Participants

Participants were 53 undergraduate students at the Uni-
versity of Toronto who received course credit for par-
ticipation. All participants provided written informed 
consent in accordance with the University of Toronto’s 
Research Ethics Board prior to completing the study. Par-
ticipants were eligible if they had normal or corrected-to-
normal vision and did not suffer from a neurological or 
psychiatric disorder.

The data reported here was initially collected to replicate 
the flanker effect in adults. Prior to data collection, we con-
ducted a power analysis for detecting flanker effects using 
the pwr package (v1.3-0; Champely, 2020)-based effect 
sizes reported in prior literature showing large differences 
in reaction time (RT) between trial types (Cohen's d effect 
sizes > .80 inCarlson & Flowers, 1996 ; Landau et al., 2012 
; Miller, 1987). Our power analysis showed that at least 34 
participants were needed to achieve at least 80% power for 
a medium flanker effect size (Cohen’s d = .5). Since reported 
effect sizes are prone to overestimation (Curran-Everett, 
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2017), we also chose (a priori) to increase our sample to 
at least 50 participants. In total, 53 undergraduates partici-
pated in the study (32 female, 8 male, 13 did not disclose 
sex; mean age = 19.09 years). Though we did not conduct 
an a priori power analysis for individual differences analy-
ses, a post hoc sensitivity analysis revealed that our sample 
size is sufficient for detecting effects as large as r = 0.37 (or 
d = 0.79) in a two-tailed test, or r = 0.33 (d = 0.72) in a one-
tailed test with 80% power.

Procedure

We adapted a correlated flanker task that has been used 
to measure learning in prior studies (Carlson & Flowers, 
1996; Landau et al., 2012; Miller, 1987). Our task was 
completed on an Apple iMac computer (OS X 10.11.6) 
with a 21.5-inch monitor (resolution of 1920 × 1080 pix-
els). On each trial, participants viewed a central target 
in the center of the computer screen that was either a 
letter (ranging from A to H) or a number (ranging from 
2 to 9). The central target was always flanked by a pair 
of identical distractor symbols (@, *, or #; Fig. 1A). All 
stimuli were shown in size 120 font and participants sat 
approximately 24 inches from the monitor producing a 
visual angle of approximately 4 degrees. Participants 
were asked to categorize the central target as either a 
letter or number as quickly and accurately as possible, 
while ignoring the flanking distractors. Unbeknownst to 
participants, targets and flankers shared a probabilistic 
relationship. One flanker was more likely to appear with 

a letter target, another was more likely to appear with a 
number target, and one was equally likely to appear with 
letter and number targets. Based on the frequency with 
which each flanking symbol appeared with each target 
class, trials were considered as one of three types: (1) 
target–flanker pairings that occurred frequently (66.66% 
of trials; n = 256) were considered consistent; (2) those 
that occurred infrequently were considered inconsistent 
(8.33% of trials; n = 32); (3) trials with flankers that were 
equally likely to be paired with letters and numbers (# 
symbol) were considered neutral (25% of trials; n = 96). 
Targets and flankers remained on the screen until the 
participant responded (leading to variable interstimulus 
intervals between trials) and participants received feed-
back on accuracy for 0.5 seconds before the next trial, 
with no interstimulus interval separating flanker and feed-
back trials. Stimuli were presented in PsychoPy (version 
1.85: Peirce, 2007).

Participants completed 384 trials across six blocks of 
64 trials. Within each block, target stimuli (eight letters 
and eight numbers) were repeated four times in a random 
sequence generated for each participant. Participants were 
offered brief breaks between blocks. The mapping of target 
classes (letters or numbers) to response keys (the keys “f” or 
“j”) and the mapping of flankers (@ or *) to targets (letters 
or numbers) were counterbalanced across participants. Prior 
to beginning the task, all participants completed a practice 
block of 10 trials.

Upon completing the experiment, participants were asked 
if they noticed any patterns between the stimuli. Participants 

Fig. 1  A Task Schematic. Participants were instructed to indicate 
whether the central target was a letter or a number while ignoring 
peripheral flankers. Targets shared a hidden probabilistic relationship 
with the flankers, such that the @ and * flanking symbols were more 
likely to be paired with a particular target category (letters or numbers, 
counterbalanced). The # symbol was never predictive and equally likely 

to flank both target categories. B Reaction time by trial type. Reac-
tion time was faster on consistent than neutral and inconsistent trials 
(ps < .01), and slower on inconsistent than neutral trials (p = .04), sug-
gesting that participants learned target–flanker correlations. Means and 
within-subject error bars are plotted based on the method described by 
Morey (2008). See Supplementary Figure 1 for participant level means
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responded by pressing either “yes” or “no” on the screen, 
and then were asked to describe the pattern.

Data preprocessing

Data preprocessing and statistical analyses were per-
formed in R version 3.6.3 (R Core Team, 2019). Prior to 
fitting models, we excluded raw RTs that were longer than 
3 seconds to eliminate the possibility that outlying trials 
biased results (on average, <1% of trials; ~ 1 trial per 
participant). We also removed linear drift in RTs related 
to time-dependent effects (e.g., fatigue, practice) by fit-
ting a linear regression model predicting RT from trial 
number, separately for each block and participant. We then 
extracted the within-subject mean-centered residuals and 
added each participant’s mean RT across the task to each 
residualized RT value. These residualized values were 
used in place of raw RTs in all analyses.

Indexing individual differences in learning 
of the target–flanker relationships

To index individual differences in learning, we calculated a 
flanker score for each participant that reflected how much 
slower, on average, a participant responded on correct incon-
sistent than correct consistent trials (mean RT on inconsist-
ent minus mean RT on consistent trials). Participants who 
had faster responses on consistent relative to inconsistent 
trials therefore had higher flanker scores and were consid-
ered better learners. See Supplementary Analysis 2 showing 
that flanker scores were unreliable when assessed using a 
split-trial reliability analysis.

Indexing fluctuations in sustained attention

We drew from prior work showing that trial-by-trial 
changes in RT deviance (Esterman et al., 2014) and speed 
(DeBettencourt et al., 2018) covary with fluctuations in 
attention and task performance. To principally determine 
which index of RT to use, we tested whether a moving 
mean of RT speed or deviance covaried with trial-by-
trial accuracy. We fit two logistic mixed-effects regres-
sion models in which accuracy served as the dependent 
variable, and the three-trial moving mean (N-1, N-2, N-3) 
of either preceding RT speed or deviance served as pre-
dictors and random slopes in separate models. This data-
driven approach showed that a moving mean of RT speed 
(b = 2.25, SE = 0.48, z = 4.71, p < .001), but not deviance 
(b = 0.31, SE = 0.40, z = 0.76, p = .447) correlated with 
task performance, such that faster RTs preceded errors. 
This same pattern was observed when restricting the anal-
ysis to trials that required a higher degree of cognitive 
control—when participants had to switch response options 

after seeing two of the same target class in a row (e.g., two 
successive letters and then a number; RT speed: b = 3.78, 
SE = 0.97, z = 3.88, p < .001; RT deviance: b = −0.70, 
SE = 0.64, z = −1.08, p = .281). Thus, we used a moving 
mean of RT speed to inform our primary metric of atten-
tion, but report results from analyses that use RT devi-
ance in the supplement for completeness (Supplementary 
Analysis 4–6). Of note, using preceding RTs to determine 
attentional state on each trial allowed us to use this atten-
tion metric to predict learning on the concurrent trial, as is 
described below, while avoiding concerns over circularity, 
as separate trials informed measures of trial-by-trial atten-
tion and learning.

Based on prior work (Esterman et al., 2012; Klatt et al., 
2019; Rosenberg et al., 2013), we indexed within-partici-
pant fluctuations in attention by first linearly interpolating 
RTs that could bias our measure of attentional lapses. We 
interpolated RTs that were more than 3 seconds (which 
could reflect breaks rather than attentional lapses) by 
averaging across the four surrounding trials (two before, 
two after). Since participants were allowed to take breaks 
between blocks, interpolation was done within each block. 
In the case that observations from the four surrounding 
trials were missing, the window size was automatically 
increased until there were at least two non-missing values. 
Following previous work (DeBettencourt et al., 2018), we 
calculated a three-trial moving mean of RTs for each par-
ticipant within each block (a moving time course) such that 
each value in the moving time course reflected the mean 
RT in the three previous trials (mean of N-1, N-2, N-3). In 
the case that there were missing values preceding a trial, 
the window size was reduced to one or two trials (as in the 
second and third trial of each block).

To assess how learning varied as a function of atten-
tion, we needed to determine which trials reflected good 
versus poor attentional states. We therefore drew from 
an existing approach (Esterman et al., 2014) that assigns 
out of the zone and in the zone labels (reflecting lapsing 
and good attention) to each trial. Since RT speed was our 
primary metric of attention, out-of-the-zone labels were 
assigned to trials during which the moving mean of RT 
was faster than a particular threshold. We determined the 
threshold in several steps: we (1) computed the mean abso-
lute RT deviance for each trial (the absolute value of the 
difference between a trial’s RT and a participant’s mean 
RT), (2) smoothed these values using a three-trial mov-
ing average (N-1, N-2, N-3), and (3) extracted the median 
value of each participant’s smoothed deviance. The mean 
of these median values across participants was used as a 
threshold for assigning zone states: out-of-the-zone labels 
were assigned to trials on which the moving time course 
of RT speed was faster than a participant’s mean moving 
time course, and more deviant than the group threshold. 
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Fig. 2  A Distribution of flanker scores (mean RT on inconsistent 
minus mean RT on consistent trials) for each participant. B Distribu-
tion of attentional lapse rates (percentage of particularly fast RTs on 
neutral trials labeled out of the zone) for each participant. For pan-
els A and B, mean and standard errors bars are marked in black, and 
the arrows mark the participant whose data is represented in panel C. 
C Within-subject smoothed RT for a representative participant, with 
periods of particularly fast RTs labeled out of the zone in orange and 

periods of slower trial RTs labeled in the zone in blue. Smoothing 
was performed by computing a three-trial moving mean of preceding 
RTs across the task. Gray lines depict non-smoothed RT across the 
task. D Between-subject correlation of flanker scores and attentional 
lapse rates. Across participants, those who had higher attentional 
lapse rates (i.e., a greater proportion of particularly fast RTs on neu-
tral trials) showed more evidence of learning the target–flanker con-
tingencies (p < 0.001). Gray shading depicts 95% confidence intervals
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Using this approach, particularly fast trials were labeled 
out of the zone (Fig. 2C). We note that our approach dif-
fers from that reported in Esterman et al., (Esterman et al., 
2014), which assumes all individuals spend half their time 
out of the zone (and therefore eliminates the possibility of 
individual differences analyses). In contrast, our approach 
assumes that individuals differ in their tendency to experi-
ence lapses—which has repeatedly been found in empirical 
work (Killingsworth & Gilbert, 2010; McVay et al., 2009; 
Seli et al., 2018; Stanley et al., 2022; Unsworth et al., 2009; 
Unsworth et al., 2014; Unsworth & Robison, 2016, 2018, 
2020; Wamsley & Summer, 2020). This approach there-
fore allows us to address theoretically important questions 
about how lapse rates relate to learning across participants. 
Moreover, our group threshold has been informed by the 
average RT deviance across the sample, allowing us to 
compare individuals using the same unbiased criteria.

Indexing individual differences in attentional lapse 
rates

Because learning could influence participants’ RT distri-
butions on consistent and inconsistent trials (e.g., making 
particularly fast responses on consistent trials), we used 
RT on neutral trials only to index individual differences 
in attention. By excluding RTs on consistent and incon-
sistent trials from our measure of attention, we were able 
to fully separate our measure of attention from that of 
learning (which relied on RTs on consistent and incon-
sistent trials). To measure attentional lapse rates for each 
participant, we calculated how far each neutral trial devi-
ated from a participant’s own mean RT on neutral trials 
(i.e., the mean absolute deviance), and then extracted the 
median of these deviances for each participant. The mean 
of these values across participants was used as a group 
threshold for assigning in- and out-of-the-zone labels to 
each neutral trial. Note that unlike the above analyses, 
this measure of attentional state was determined based 
on the current trial’s RT (not the average of the preceding 
RTs), since we wanted our measure of attentional state to 
be derived only from RTs on neutral trials. To determine 
attentional states on neutral trials, RTs that were faster 
than a participant’s mean RT on neutral trials and more 
deviant than the threshold were labeled out of the zone 
and other neutral trials were labeled in the zone. Sustained 
attention (“attentional lapse rate”) reflected the proportion 
of neutral trials participants spent out of the zone.

For completeness, we also calculated a secondary meas-
ure of attentional lapse rate using all trials across the task. 
To ensure continuity with the within-subject measure of 
attentional fluctuations, the same in- and out-of-the-zone 
labels derived from our primary measure of attentional fluc-
tuations were used to calculate lapse rates (described above 

under the heading Operationalizing fluctuations in sustained 
attention). As in the calculation for neutral trial lapse rates, 
this secondary measure of lapse rate reflected the proportion 
of out-of-the-zone trials across the task.

Statistical analyses

Prior to fitting models, all continuous predictors were mean 
centered within participants. Two-tailed tests were used in 
all analyses, and p-values < 0.05 were considered statistically 
significant. The lmerTest package (Per et al., 2017) was used 
to obtain p-values for linear models using Satterthwaite's 
degrees of freedom method (Satterthwaite et al., 2012). Only 
correct trials were included in models described below in 
which RT was the dependent variable.

Testing whether individuals learned the target–
flanker correlations

To determine trial type differences in RT and accuracy (con-
sistent, neutral, inconsistent), we fit a general linear mixed-
effects regression model and a logistic mixed-effects regres-
sion model using the lme4 package (version 1.1-23; see 
Supplementary Analysis 1 showing a better fit of the learning 
than null model). RT and accuracy were dependent variables 
in separate models. Because accuracy is a binary outcome 
(1 = accurate, 0 = inaccurate) it was modeled using a logistic 
regression model, and the resulting beta values are log odds 
ratios. Since trial type was nested within participants, we 
included trial type as a fixed and random effect in the model 
predicting accuracy, allowing us to model a random slope 
for trial type and a random intercept for each participant. Of 
note, we were unable to estimate random slopes for the trial 
type variable in models examining learning that used RT as 
a dependent variable because of singularities in the random 
effect estimation. We therefore only fit random intercepts for 
participants in models predicting RT.

Examining learning over the course of the task

We were particularly interested in characterizing both 
how learning shifted across the task, and at which point 
individuals displayed significant evidence of learning. We 
therefore divided the task into thirds and examined whether 
evidence of learning increased across task thirds, and 
whether there was significant evidence for learning within 
each third. Dividing the task into thirds allowed us to ascer-
tain at which point in the task individuals tended to display 
evidence of learning while also ensuring enough inconsist-
ent trials within each bin (at least 10). The division of the 
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task into thirds aligns nicely with the structure of the task 
that included six blocks in total, therefore allowing for two 
blocks per task third. We used RT as our primary metric 
of learning since high accuracy was expected regardless 
of trial type. We first fit a linear mixed-effects regression 
model predicting RT, with trial type, task third, and their 
interaction as predictors. We then fit three linear mixed-
effects models separately for each task third to examine 
trial type differences in RT. RT served as the dependent 
variable and trial type as the independent variable.

Investigating whether attentional lapses relate 
to learning

Between‑subject analyses We correlated flanker scores 
with attentional lapse rates. See Supplementary Analysis 
2 showing that the relationship between flanker scores and 
lapse rates replicates in separate subsamples of the data 
(odd and even trials). Since flanker scores were not nor-
mally distributed, we fit Spearman correlations. For all 
analyses, we first report the results from the full sample of 
participants and then report results after restricting analy-
ses to participants who show evidence of learning within 
the last two thirds of the task (“learners,” i.e., flanker 
scores above zero). Of note, we speculate that the negative 
flanker scores likely reflect a null effect of learning at the 
participant level with the addition of measurement error. 
In other words, participants with negative values likely 
have not learned the contingencies.

We also performed analyses to test how attention and 
learning were related in time; that is, whether higher atten-
tional lapse rates early in the task predicted greater learn-
ing of the target–flanker relationships later. Thus, we corre-
lated the percent of trials out of the zone in the first third of 
the task with flanker scores (inconsistent minus consistent 
trial RT) calculated only from the last two thirds of the 
task. We used our measure of lapse rate that incorporated 
all trials for these analyses to ensure sufficient power for 
estimating lapse rates in the first third of the task. Partial 
Spearman correlations were used to examine the relation-
ship between early lapses and later learning after control-
ling for (1) flanker scores derived from data within the first 
third of the task and (2) the percent of trials out of the zone 
in the last two thirds of the task.

Within‑subject analyses We fit a linear mixed-effects model 
to determine whether attentional lapses increased evidence of 
learning of the target–flanker contingencies. Response time 
served as the dependent variable, and trial type, attentional 
state (effect coded: in the zone = −1, out of the zone = 1), and 
their interaction served as predictors. We modeled random 
intercepts for each participant to account for the random effect 
of participant on RT, and random slopes for attentional state.

Results

Participants learned the target–flanker correlations

As expected, participants displayed evidence of learning: RT 
was faster on consistent than inconsistent trials (b = −0.02, 
SE = 0.006, t(19385) = −4.10, p < .001; mean RT on con-
sistent = 0.563 seconds; inconsistent = 0.589 seconds) and 
neutral trials (b = −0.01, SE = 0.004, t(19385) = −2.90, 
p = .004; mean RT on neutral = 0.574 seconds), and faster 
on neutral than inconsistent trials (b= −0.01, SE = 0.006, 
t(19385) = −2.07, p = .038; Fig. 1B and Figure S1). Moreo-
ver, accuracy was higher on consistent than inconsistent tri-
als (b = 0.51, SE = 0.15, z = 3.36, p < .001; mean accuracy 
on consistent = 96%; inconsistent = 94%) and neutral trials 
(b = 0.38, SE = 0.10, z = 3.89, p < .001; mean accuracy on 
neutral = 95%;); however, accuracy did not differ on neutral 
and inconsistent trials (b = 0.13, SE = 0.16, z = 0.81, p = .418; 
Figure S2). These results suggest that participants learned 
the target–flanker correlations despite being instructed to 
ignore the flanking content while categorizing the central 
target. Given this clear expression of learning and follow-
ing previous work (Carlson & Flowers, 1996; Landau et al., 
2012), subsequent analyses focus on differences between 
consistent and inconsistent trials.

We next explored how evidence of learning unfolded 
as the task progressed. While RT differences between 
consistent and inconsistent trials did not differ between 
the first and middle (b = 0.02, SE = 0.01, t(19379) = 1.34, 
p = .180) or middle and last third (b = −0.007, SE = 0.01, 
t(19379) = −0.49, p = .621), RT differences were marginally 
larger in the last than the first third of the task (b = −0.03, 
SE = 0.01, t(19379) = −1.83, p = .067). Examining the 
data separately for each task third revealed that RT dif-
ferences between consistent and inconsistent trials were 
absent in the first third of the task (b = 0.01, SE = 0.01, 
t(6459) = 1.20, p = .231), but by the middle and last third, 
RTs were slower on inconsistent than consistent trials (mid-
dle: b = 0.02, SE = 0.009, t(6438) = 2.12, p = .034; last: 
b = 0.04, SE = 0.01, t(6381) = 3.85, p < .001). Thus, learning 
unfolded gradually over time and participants did not display 
clear evidence of learning until the second third of the task.

Individual differences in attention predict learning

We calculated a flanker score for each participant that 
reflected how much slower RT was, on average, on correct 
inconsistent than correct consistent trials (Fig. 2A). We also 
calculated an attentional lapse rate for each participant using 
only neutral trials (our primary metric of lapse rates; Fig. 2B; 
see methods). Consistent with our hypothesis, higher atten-
tional lapse rates on these neutral trials correlated with larger 
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flanker scores (Spearman rs = 0.44, 95% CI[0.182, 0.644], 
p < 0.001; Fig. 2D). This same relationship was observed 
when using lapse rates derived from all trials (consistent, 
neutral, and inconsistent; rs = 0.40, 95% CI[0.132, 0.610], 
p = 0.003); Figure S3 and when restricting analyses to learn-
ers only (i.e., those with flanker scores above zero in the last 
two thirds of the task; N = 38; using lapse rates on neutral 
trials: rs = 0.41, 95% CI[0.089, 0.652], p = 0.01; using lapse 
rates across all trials of the task: rs = 0.37, 95% CI[0.047, 
0.625], p = 0.02; Figures S4–5). Furthermore, these relation-
ships held when controlling for median RT (Supplementary 
Analysis 3) and were robust when using different operation-
alizations of sustained attention (e.g., RT deviance; Sup-
plementary Analysis 4–5). Thus, those who spent more time 
out of the zone show greater learning of the target–flanker 
relationships.

But why might attentional lapses increase people’s learn-
ing of the target–flanker correlations? Perhaps periods of 

poor attention may be well suited to learning uninstructed 
contingencies or incorporating extraneous (but potentially 
informative) cues into decisions. To assess the learning 
mechanism, we investigated how attention and learning 
related in time. We reasoned that if attentional lapses facili-
tate learning, lapses early in the task—before the expression 
of learning is observed—would be most predictive of later 
learning outcomes, even after accounting for early learning 
and later lapse lapses. We therefore looked at how lapse rates 
in the first third of the task related to learning expressed in 
the last two thirds after controlling for early learning and 
later attentional lapse rates (Fig. 3A). Consistent with our 
prediction, lapse rates in the first third of the task positively 
correlated with flanker scores calculated from data within 
the last two thirds of the task (rs = 0.47, 95% CI[0.21, 0.66], 
p < 0.001). This relationship held after adjusting for the per-
cent of trials spent out of the zone during these later phases 
(rs = 0.34, 95% CI[0.065, 0.56], p = 0.01; Fig. 3B), and after 

Fig. 3  A Analysis schematic relating early attentional lapses to later 
learning. B, C The percent of trials participants spent out of the zone 
(i.e., periods of particularly fast RTs) in the first third of the task 
correlated with flanker scores in the last two thirds of the task after 
adjusting for the percent of trials out of the zone in the last two thirds 
of the task (B; p = 0.01), and flanker scores in the first third of the 
task (C; p < 0.001). Gray shading in B and C depict 95% confidence 

intervals. D RT differences on consistent and inconsistent trials, for 
trials labeled in versus out of the zone. Participants showed greater 
evidence of learning the target–flanker contingencies—reflected in 
larger RT differences between trial types—during out-of-the-zone 
than in-the-zone states (i.e., during periods in which the preceding 
RTs were particularly fast; p = 0.009). Means and within-subject error 
bars are plotted based on the method described by Morey (2008)
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adjusting for flanker scores calculated from trials within 
the initial third of the task (rs = 0.45, 95% CI[0.19, 0.65], 
p < 0.001; Fig. 3C), meeting the requirements of Granger 
causality. Moreover, these relationships were observed when 
restricting analyses to only learners (Supplementary Analysis 
8). These temporal relationships strongly suggest that early 
lapses precede the learning of target–flanker contingencies—
learning that is expressed in later blocks.

Within‑subject fluctuations in attention shape 
processing of target–flanker relationships

Last, we investigated whether attentional fluctuations influ-
enced the likelihood that an individual displayed learning for 
the target–flanker correlations. Remarkably, RT differences on 
consistent and inconsistent trials were greater when individu-
als were out of the zone than in the zone (b = 0.03, SE = 0.01, 
t(19077) = 2.59, p = .009; Fig. 3D). This relationship was also 
observed when using a deviance-based operationalization of 
attention (Supplementary Analysis 5) and when restricting 
analyses to learners (Supplementary Analysis 7). Critically, 
this relationship was not simply due to learning and atten-
tional lapse rates increasing across the task: RT differences 
between inconsistent and consistent trials persisted when con-
trolling for trial number (b = 0.03, SE = 0.01, t(19076) = 2.61, 
p = .009). These findings suggest that people are more likely 
to express learning by incorporating peripheral information 
into decisions during attentional lapses.

Most participants were not explicitly aware 
of the target–flanker relationships

To understand whether learning occurred because partici-
pants became explicitly aware of the target–flanker relation-
ships, we examined responses on a post-experiment ques-
tionnaire that probed for explicit awareness. While 14 of 
the 53 participants reported noticing a pattern, only five cor-
rectly indicated that there was a relationship between targets 
and flankers. Thus, most participants were unaware (at least 
explicitly) of the target–flanker contingencies. Importantly, 
excluding these five participants did not change the pattern 
of results (Supplementary Analysis 9).

Discussion

We uncovered an underappreciated benefit of attentional lapses: 
they can help us learn and use contingencies that lie beyond our 
narrow goals. People who learned the most about target–flanker 
pairings were in a reduced attentional state—that is, “out of the 
zone”—more often than those who learned less. This finding 
held true regardless of the different ways we operationalized 
sustained attention (using RT speed or deviance). What is more, 

people who ultimately displayed the greatest learning of the 
uninstructed contingencies spent more time in a poor attentional 
state early in the task, suggesting lapses may be instrumental in 
the initial acquisition of learning. Finally, we show that—even 
within individuals—attentional lapses heighten learning of the 
flanking contingencies, directly implicating attention in a way 
that cannot be achieved by comparing groups or individuals. 
Together, these results suggest that attentional lapses boost 
learning of seemingly irrelevant information.

Our finding of better learning during attentional lapses 
adds a mechanistic explanation to previous work showing 
populations with reduced attentional control—aging adults 
(Campbell et al., 2012), children (Deng & Sloutsky, 2016), 
and young adults with high impulsivity (Landau et  al., 
2012)—show better learning of goal-irrelevant informa-
tion. While these compelling demonstrations suggest that 
reduced cognitive control enhances learning of distractors, 
this prior work relies on pre-existing group differences that 
may covary with other traits that influence learning. Our 
focus on sustained attention therefore adds precision by spe-
cifically narrowing in on sustained attention and relating it to 
the learning of information that is seemingly goal-irrelevant.

These findings provide evidence for underload theories 
of attention, which propose that resources are not entirely 
depleted during an attentional lapse, but rather are rede-
ployed elsewhere (Ariga & Lleras, 2011; Manly et al., 1999; 
Robertson et al., 1997; Smallwood & Schooler, 2006). In 
particular, we show that resources may be directed towards 
other information in our environments.

It is important to note that the distractors in our study are 
special. While they are not required to perform the instructed 
task—that is, determine whether the central graphic is a let-
ter or a number—they are related to the central graphic by 
definition. Moreover, when the distractors are consistent, 
they speed responses. Thus, these are distractors in the sense 
that participants were told to ignore them. It is possible 
that when one is out of the zone, attentional resources are 
only applied to distractors that are indirectly task relevant. 
Thus, lapses might broaden our narrow focus specifically in 
ways that benefit behavior. Relatedly, it is worth consider-
ing whether purely irrelevant stimuli are ecologically valid. 
Natural environments contain information that is probabil-
istically relevant or only relevant in the future. Importantly, 
our study is a step toward understanding the relationship 
between attentional lapses and the learning of distractors 
that are extraneous but indirectly related to the task, but 
future work is needed to understand the boundaries of this 
effect and precisely what irrelevant or peripheral information 
is “prioritized” in more complex environments.

At first blush, our findings appear to be at odds with work 
showing greater neural sensitivity to goal-irrelevant stimuli 
during focused attention (Esterman et al., 2014). However, 
this prior study differed from ours in important ways. First, 
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there was no behavioral index of how well the distracting 
images were learned; their processing was inferred from 
greater repetition suppression of the BOLD signal in canoni-
cal scene processing networks. Interestingly, stronger rep-
etition suppression can be associated with worse learning 
(Wagner et al., 2000). It is therefore possible that partici-
pants learned more about the distracting scenes during poor 
attentional states since repetition suppression was reduced 
when participants were out of the zone. It is also noteworthy 
that the distractors used (Esterman et al., 2014) were not 
correlated with the central targets as ours were. It could be 
that when distractors are indirectly related to the task, they 
become more difficult to inhibit when out of the zone, lead-
ing to learning, as we observed.

Critically, the relationships between targets and flankers 
in this study were probabilistic and learned incrementally 
over time. Previous work shows that incremental probabil-
istic learning is mediated by striatal circuits (Myers et al., 
2003; Poldrack et al., 2001; Shohamy et al., 2009) and is 
broadly referred to as procedural learning (Gabrieli, 1998; 
Kalra et al., 2019). It could be that being out of the zone ben-
efits incremental learning of distractors, but not declarative 
or episodic learning, which is mediated by the hippocampus 
(Schacter & Tulving, 1994). Suggestive of this possibility, 
the procedural, but not the episodic memory system learns 
well under dual-task conditions (Foerde et al., 2006; Foerde 
et al., 2007) when attentional resources are spread thin. It 
could therefore be that poor attention benefits procedural 
learning specifically. Understanding possible differences in 
the impact of attentional fluctuations on different learning 
systems will ultimately inform questions about how these 
systems interact (Duncan et al., 2019), which may differ on 
a moment-to-moment basis.

Finally, while our results were robust to several control 
analyses and different operationalizations of sustained atten-
tion, further research is needed to bolster our conclusions. 
We see a need for high-powered studies to directly replicate 
this work, particularly the individual difference analyses, 
as well as extensions to better understand how attentional 
lapses relate to learning of different types of distractors.

Future work notwithstanding, the present findings suggest 
that a reconceptualization of attentional lapses is due, with 
a new emphasis on the associated benefits, rather than only 
the costs. Deviations from an “optimal” attentional state may 
not be purely harmful insofar as learning is concerned, as 
other information does appear to be processed during these 
“suboptimal” states. Moreover, this processing may not just 
be focused on the “internal” meanderings of our minds but 
also surveying our “external” worlds for learning opportu-
nities that lie beyond the task at hand. As a result, perhaps 
attentional lapses should not be considered failures per se, 
but rather, opportunities to expand what we take away from 
our experiences.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 022- 02226-6.
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