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Disparities in socioeconomic status (SES) lead to unequal access to financial and social support. These disparities are believed to
influence reward sensitivity, which in turn are hypothesized to shape how individuals respond to and pursue rewarding experiences.
However, surprisingly little is known about how SES shapes reward sensitivity in adolescence. Here, we investigated how SES influ-
enced adolescent responses to reward, both in behavior and the striatum—a brain region that is highly sensitive to reward. We exam-
ined responses to both immediate reward (tracked by phasic dopamine) and average reward rate fluctuations (tracked by tonic
dopamine) as these distinct signals independently shape learning and motivation. Adolescents (n= 114; 12–14 years; 58 female) per-
formed a gambling task during functional magnetic resonance imaging. We manipulated trial-by-trial reward and loss outcomes,
leading to fluctuations between periods of reward scarcity and abundance. We found that a higher reward rate hastened behavioral
responses, and increased guess switching, consistent with the idea that reward abundance increases response vigor and exploration.
Moreover, immediate reward reinforced previously rewarding decisions (win–stay, lose–switch) and slowed responses (postreward
pausing), particularly when rewards were scarce. Notably, lower-SES adolescents slowed down less after rare rewards than higher-
SES adolescents. In the brain, striatal activations covaried with the average reward rate across time and showed greater activations
during rewarding blocks. However, these striatal effects were diminished in lower-SES adolescents. These findings show that the
striatum tracks reward rate fluctuations, which shape decisions and motivation. Moreover, lower SES appears to attenuate
reward-driven behavioral and brain responses.
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Significance Statement

Lower socioeconomic status (SES) is associated with reduced access to resources and opportunities. Such disparities may shape
reward sensitivity, which in turn could influence how individuals respond to and pursue rewarding experiences. Here, we show
that lower-SES adolescents display reduced reward sensitivity in the brain and behavior. The striatum—a brain region that is
highly sensitive to reward—showed greater activations during periods of high reward and tracked fluctuations between
reward-rich and reward-scarce task phases. However, lower SES correlated with smaller reward-driven striatal responses and
reduced response slowing after rare rewards. These findings link lower SES to reduced reward responses, which could trigger
a cycle of reduced reward pursuit, leading to fewer positive experiences, which could further diminish reward sensitivity.
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Introduction
Adolescents from lower-SES backgrounds have less access to
enriching opportunities and resources than their higher-SES
peers (Farah, 2017). These disparities may influence reward sen-
sitivity, which in turn, could shape how adolescents respond to or
pursue rewarding experiences (Amir et al., 2018). Such a cycle
could explain how SES—by modulating reward responses and
related processes—is associated with many consequential devel-
opmental outcomes (Farah, 2017). Here, we examined how SES
relates to reward-driven responses in behavior and the brain in
adolescents, focusing on the striatum because of its high sensitiv-
ity to reward (Schultz, 1993).

Rewards powerfully influence motivation, learning, and
decision-making. Immediately rewarding outcomes, signaled
by fast phasic striatal responses, are thought to serve as a learning
signal to maximize rewards (Day et al., 2007). Rewarding out-
comes strongly reinforce prior actions that led to rewards
(Hamid et al., 2016) and induce “postreward pausing” in beha-
vior (Schlinger et al., 2008). Individuals are also sensitive to the
overall amount of reward available in their environment. The
average environmental reward rate (tracked by tonic dopamine
and estimated from past reward history) influences
moment-to-moment shifts in response time and exploration
(Niv et al., 2007; Hamid et al., 2016; Wang et al., 2021). A high
environmental reward rate boosts response speeding, in theory,
by increasing the cost of time (slower responses forfeit more
rewards; Niv et al., 2006, 2007; Beierholm et al., 2013; Wang et
al., 2013, 2021; Otto and Daw, 2019) and increases exploration,
in theory, due to the high likelihood of attaining rewards in the
environment (Niv et al., 2007; Constantino and Daw, 2015;
Sukumar et al., 2023). Interestingly, these distinct reward signals
also interact: reward scarcity heightens sensitivity to immediate
reward, amplifying both phasic dopamine firing following
rewards (Bayer and Glimcher, 2005; Hamid et al., 2016) and
behavioral pausing after rewarding outcomes (Schlinger et al.,
2008).

How SES influences responses to these distinct reward signals
in adolescents in the brain and behavior remains unclear.
Previous research suggests that lower SES may increase sensitiv-
ity to immediate reward, as lower-SES individuals tend to choose
small immediate rewards over larger, delayed ones (Oshri et al.,
2019). This is hypothesized to adaptively enable individuals
to quickly seize scarce reward opportunities to meet basic needs
(Frankenhuis et al., 2016; Pepper and Nettle, 2017; Frankenhuis
and Nettle, 2020). Lower-SES environments can also be less pre-
dictable (Evans, 2004), meaning past reward history may poorly
predict future outcomes (Ross and Hill, 2002; Behrens et al.,
2007). Based on this research, lower-SES adolescents may be
highly responsive to immediate reward but less responsive to
past reward history, which could lead to contextually suboptimal
behavior.

This hypothesis, however, contrasts with two studies that
found that lower SES in adolescents correlated with reduced
responses to rewarding cues in the parietal (White et al., 2022)
and frontal (Palacios-Barrios et al., 2021) cortices. Notably, how-
ever, both studies linked lower SES to poorer behavioral learning
of cue–reward associations (Palacios-Barrios et al., 2021; statisti-
cal trend, White et al., 2022), which may have altered expecta-
tions of reward when viewing reward-predicting cues. The
present study therefore eliminated learning demands.

In the present study, we examined behavioral and striatal
responses to reward and reward rate fluctuations in adolescents
from diverse SES backgrounds. Adolescents performed a

gambling task during functional magnetic resonance imaging
in which they won or lost on each trial. Unbeknownst to partic-
ipants, we manipulated trial outcomes, leading to alternating
periods of reward scarcity and abundance. We examined how
immediate reward and average reward rate fluctuations shaped
vigor [response times (RTs)] and choices differently by SES.
We also examined SES-related differences in the influence of
reward and average reward rate fluctuations on striatal responses.
Our results support influential theories of decision that argue the
striatum tracks average reward rate fluctuations, as well as theo-
ries that suggest that lower SES reduces behavioral and striatal
reward sensitivity.

Methods
Participants
We recruited 127 adolescents from diverse SES backgrounds as part of a
larger project examining the relationship between SES, brain develop-
ment, and cognition. Eligible participants were in the seventh or eighth
grade, were proficient in English, had no MRI contraindications, were
not diagnosed with autism or a neurological disability, and were not
born premature (<34 weeks). Thirteen children did not complete the
MRI, resulting in a sample of 114 adolescents [age range = 12–14;
mean (SD) = 13.46 (0.68), n= 56 female]. Five participants with excessive
movement during scanning [average framewise displacement (FD) of
more than 0.6 mm] were retained only for behavioral analyses, leaving
109 for the neuroimaging analysis (correlation between FD and SES
among the included participants: β= 0.005, SE = 0.01, t(107) = 0.35,
p = 0.730, r= 0.03). Of note, the findings remained unchanged with a
more conservative limit of movement (average FD of <0.3 mm). All chil-
dren and their legal guardians provided assent and consent. The study
was approved by the MIT Committee on the Use of Human Subjects.
Participants received compensation for their time.

Before collecting data, we targeted a sample of at least 100 partici-
pants based on studies reporting medium-to-large effects (i.e., Cohen's
d of 0.5–0.8) on the relationship between SES and cognitive performance
(Noble et al., 2007; Finn et al., 2017; Leonard et al., 2019), brain structure
(Romeo et al., 2018; A. L. Decker et al., 2020), and brain function (Finn et
al., 2017). A sensitivity analysis revealed that our sample size provided
80% power to detect medium effects (d of 0.53 or Pearson's r of 0.25)
in two-tailed between-subject analyses.

Measure of SES
Participants’ caregivers reported their annual household income (range=
$2k-$1.25 m) and the number of years of schooling they had completed
(range= 7–20 years). Our primary measure of SES incorporated both of
these variables. We averaged the z-scores of maternal education, paternal
education, and log-transformed income measures (Fig. 1A depicts the
SES distribution). The log transformation on income accounts for the
greater impact that gains have for lower-SES individuals. Two partici-
pants were missing one of the three measures, so their SES index was
the average of the two others.

Experimental design
Participants performed a variant of the Delgado et al. card-guessing task
(Delgado et al., 2000; Hubbard et al., 2020a,b; Fig. 1B). On each trial, ado-
lescents guessed if an upcoming number, with a possible value from 1 to
9, would be larger or smaller than 5. They then received immediate feed-
back based on the accuracy of their guess. Participants were told that accu-
rate guesses would be financially rewarded as wins, inaccurate guesses
would be financially punished as losses, and the sum of wins and losses
would be calculated for an additional payment. Unbeknownst to partici-
pants, trial-by-trial gains and losses were predetermined and fixed across
trials, with numbers generated to match the predetermined outcome for
each trial. Outcomes were therefore unrelated to participant guesses,
which equalized uncertainty across participants, and ensured everyone
had the same experience of winning and losing.

Each trial began with a question mark, during which participants had
1.5 s to register a guess (smaller than 5 = index finger; larger than
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5 = middle finger; Fig. 1B). A number was then displayed for 500 ms,
followed by 500 ms of feedback. Feedback indicated whether participants
had won or lost money or neither won nor lost money. Positive feedback,
which followed correct guesses, consisted of a green arrow pointing up
and the text “+$1”; negative feedback, which followed incorrect guesses,
consisted of a red arrow pointing down and text displaying “−$0.5”; neu-
tral feedback, which followed the number 5, consisted of a light green
double-sided arrow. If participants did not register a guess, they received
neutral feedback. This happened rarely (3.1 trials or 4.5% of trials on
average per participant; the relationship between missed responses and
SES: β= 0.27, SE = 0.29, t(114) = 0.95, p= 0.35). Participants viewed a
fixation cross for 1 s before a new trial began.

The task, in total, across both runs, consisted of eight blocks of eight
trials each, with four blocks of mostly positive outcomes (“reward
blocks”) and four blocks of mostly negative outcomes (“loss blocks”).
Each of the two runs contained two reward and two loss blocks, and
each block was approximately 28 s. This block design maximized the
ability to detect striatal responses to reward, while also leading to alter-
nating periods of monetary reward scarcity and abundance, allowing
us to examine the influence of fluctuations in average reward rate across
time (Fig. 1D). To keep participants unaware of the fixed outcomes, there
was no delay between blocks, and blocks contained a few trials of the
opposite type (Fig. 1C depicts the trial outcomes in a representative
reward and loss block). Reward blocks included six reward trials inter-
leaved with two of either loss or neutral trials. Loss blocks included six
loss trials interleaved with two of either reward or neutral trials. All par-
ticipants received $10 in bonus money after the task.

Image acquisition
Participants practiced the gambling task and completed a mock scanning
session to acclimate to the MRI environment, which improves compli-
ance (de Bie et al., 2010; Gao et al., 2023). They then completed two
runs of the gambling task inside the scanner and watched a movie while
we acquired a T1-weighted (T1w) anatomical scan. Images were acquired
using a 3T Siemens Prisma Fit scanner with a 32-channel head coil.
Whole-brain functional BOLD images were acquired using an EPI
sequence (TR= 0.8 s, TE = 37 s, flip angle = 52°, voxel size = 2 mm isotro-
pic, multiband factor = 8). The two runs were acquired with reversed
phase encoding to support distortion correction. High-resolution T1w
images were acquired with an MP-RAGE sequence (TR = 2.4 s,
T = 2.18 ms, flip angle = 8°, voxel size = 0.8 mm isotropic).

Image preprocessing
Preprocessing of anatomical and functional data was performed using
fMRIPrep version 22.1.1 (Esteban et al., 2019).

Anatomical preprocessing. The anatomical T1w image was corrected
for intensity nonuniformity with N4BiasFieldCorrection (Tustison et al.,
2010) distributed with ANTs 2.3.3 (Avants et al., 2008) and used as a T1w
reference throughout the workflow. The T1w reference was then skull-
stripped using ANTs workflow with OASIS30ANTs as the target tem-
plate. Brain tissue segmentation of gray matter, white matter, and cere-
brospinal fluid was performed on the brain-extracted T1w using fast
(FSL 6.0.5.1:57b01774; RRID, SCR_002823; Zhang et al., 2001). Brain
surfaces were reconstructed using recon-all from FreeSurfer version

Figure 1. SES score distribution, gambling task schematic, and trial-by-trial moving average of rewards and losses. A,Distribution of SES composite scores: SES was operationalized as the mean
of the z-transformed maternal and paternal education variables (years of schooling completed) and z-scored log of annual household income. The distribution is displayed, with the y-axis
representing sample proportions. B, Gambling task schematic: Participants guessed whether a forthcoming number would be >5 or <5. Next, the actual number was revealed, and participants
received positive (top panel, green arrow), negative (middle panel, red arrow), or neutral feedback (if the number was 5; bottom panel, light green arrow) regarding their guess. A 1 s fixation
cross (not depicted) preceded the next trial. C, Calculating the moving average of reward: An EWMA of gains and losses quantified recent history of reward. This measure was used to examine
whether distinct task phases associated with reward scarcity or abundance influenced trial-by-trial shifts in behavior (choices, RTs) and interacted with behavioral responses (choices, RTs) to
immediate feedback. D, Schematic of reward rate fluctuations in a representative participant. The gray shading represents loss blocks and nongray areas represent reward blocks. The pink and
green colors denote periods in which the moving average of reward is above or below the mean.
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7.2.0 (Dale et al., 1999), and the brain mask estimated previously was
refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentation of subcortical gray
matter including striatal subregions (Fischl et al., 2002). Volume-based
spatial normalization to one standard space was performed through non-
linear registration, using brain-extracted versions of both the T1w refer-
ence and T1w template. FSL's MNI ICBM 152 nonlinear 6th Generation
Asymmetric Average Brain Stereotaxic Registration Model (Evans et al.,
2012; RRID, SCR_002823; TemplateFlow ID, MNI152NLin6Asym)
was selected for spatial normalization.

Functional preprocessing. A skull-stripped reference volume was
generated using a custom methodology of fMRIPrep. Head motion
parameters were estimated using mcflirt (FSL 6.0.5.1:57b01774;
Jenkinson et al., 2002). The estimated fieldmap was aligned with rigid-
body registration to the target EPI reference run. Field coefficients
were mapped onto the reference EPI using the rigid-body transform.
BOLD runs were slice time corrected using 3dTshift from AFNI (Cox
and Hyde, 1997; RRID, SCR_005927). The BOLD reference images
were coregistered to the T1w reference using bbregister (FreeSurfer;
Greve and Fischl, 2009), with six degrees of freedom. Noise regressors
were estimated based on the preprocessed BOLD. An FD was computed
using two formulations following Power et al. (2014) and Jenkinson et al.
(2002). Physiological regressors were extracted from eroded cerebrospi-
nal fluid and white matter volumes for use in subsequent, component-
based noise corrections (CompCor; Behzadi et al., 2007). The BOLD
time series were resampled into standard space in a single interpolation
step by composing all the pertinent transformations (i.e., head motion
transform matrices, susceptibility distortion correction, and coregistra-
tions to anatomical and output spaces). Volumetric resamplings were
performed using ANTs, configured with Lanczos interpolation to mini-
mize the smoothing effects of other kernels (Lanczos, 1964).

Statistical analyses
Statistical analyses were conducted in R (version 4.2.2). Raw data, code,
and extended analyses and supplementary tables are available at the fol-
lowing link: https://osf.io/pqtby/. Unless stated otherwise, linear
mixed-effects regressions or general linear mixed-effects regressions
were employed for data that repeated within participants (e.g., single-
trial RTs). Mixed-effects models included random intercepts for each
participant and random slopes for fixed effects that repeated within par-
ticipants. In the case of nonconverging models, we followed the recom-
mendations by Brown (2021), iterating through the following until they
converged: (1) using the “bobyqa” optimizer, (2) increasing the number
of iterations, (3) forcing zero correlations among random effects, and (4)
dropping random effects based on model comparison. RTs that fell three
absolute deviations from an individual's median RT were excluded (n= 2
on average per participant). Measures were mean centered within or
across participants or effect-coded prior to model fitting.

Calculating trial-by-trial shifts in the moving average reward rate.
We computed an exponentially weighted moving average (EWMA) of
rewards and losses across trials ($1, $0.5, or $0; see Fig. 1C,D for a sche-
matic). Each trial was assigned a value based on the recent reward and
loss history. High values indicated more gains than losses, whereas low
values indicated more losses than gains. We used an exponentially
weighted (rather than simple) moving average to emphasize recent
time points, which have a larger impact on psychological state, while still
incorporating data points from farther in the past (Awheda and
Schwartz, 2016). We used the following update rule:

EWMAt = a× rt + (1–a)× EWMAt−1

In this formula, the EWMAt represents the EWMA at the current trial, t,
α is the smoothing factor or learning rate parameter that determines the
influence of the most recent observation on the moving average, and r
represents the reward on the current trial, t. To prevent disproportionate
initial weighting and to ensure the average reward rate stabilized, the first
three trials were omitted from the EWMA measure. To balance recent

and historical data, α was based on an eight-period span, calculated as
α= 2/(N+1), where N was set to 8 to match the number of trials in
each fixed reward and loss block. However, we found that using
EWMAs derived from smoothing factors of 5- and 10-period spans
did not alter the pattern of results.

As an exploratory analysis, we also tested whether individual differ-
ences in optimal learning rates for the average reward rate variable
differed by SES. To do so, we fit a model that estimated the learning
rate as a free parameter for each participant using R's base optim function
with the L-BFGS-B algorithm. The algorithm identified the learning rate
per participant that minimized that residual sum of squares (RSS) in a
model predicting subsequent RTs from the EWMA of reward for each
participant.

Characterizing behavioral responses to rewards. We examined how
immediate feedback (win vs loss outcomes) and fluctuations in the aver-
age reward rate shaped RTs and guesses. We first fit a model predicting
RTs from the preceding trial's feedback (win, loss), the moving average of
reward, and their interaction. We then refit this model after adding SES
as a covariate and interaction term. We also examined the influence of
immediate reward and average reward rate fluctuations on choices—spe-
cifically, how likely an individual was to repeat their prior guess or switch
to a different guess (i.e., switched or stayed). Therefore, the dependent
variable was whether an individual had repeated their prior choice
(switched = 1; stayed = 0), and the independent variables were the pre-
ceding trial feedback (win, loss), the moving average of reward, and their
interaction. We refit this model after adding SES as a covariate and inter-
action term. All models included trial numbers as a covariate to control
for the general effects on time on task. Since there were only eight neutral
trials per participant across the task, trials that followed neutral feedback
were excluded from the analysis.

The relationship between SES and striatal volumes
Three linear mixed-effects models were fit to examine the association
between SES and ROI volumes, separately for the caudate, putamen,
and nucleus accumbens. Each model predicted volume from SES, hemi-
sphere, and their interaction, to determine whether the influence of SES
was stronger for one particular hemisphere. Age, sex, and intracranial
volume were also included as covariates. ROIs with volumes that fell
>3 absolute deviations from the sample median were excluded (all
regions for one participant and the caudate and right nucleus accumbens
for another).

Examining reward-driven striatal responses to reward and average
reward rate fluctuations across time
To ascertain if striatal activations during reward differed from loss blocks
and to examine their covariance with average reward rate fluctuations,
we conducted neuroimaging analyses with Nilearn. The scripts and
data are publicly accessible (https://osf.io/pqtby/). The approach
involved two separate general linear models (GLMs) applied to partici-
pant data within the MNI coordinate space. The first model had distinct
regressors for reward and loss conditions. The second model incorpo-
rated a regressor for the EWMA of reward, resampled at the fMRI's
TR. Both models were convolved with SPM's hemodynamic response
function and controlled for head movement and noise components
(three translation and rotation parameters, plus the top five principal
aCompCor components, defined in a combined white matter and cere-
brospinal fluid mask). This analysis yielded z-value effect size maps for
each subject. The maps were entered into a group-level analysis to iden-
tify striatal voxels that were sensitive to the distinct reward versus loss
blocks or to the average reward rate. Sensitivity was defined by voxel
significance within the anatomical striatal mask from the Harvard–
Oxford Atlas (FDR-corrected p < 0.05, minimum cluster size of 10).
For each analysis, we calculated the mean z-value per participant across
responsive voxels, separately for the caudate, putamen, and nucleus
accumbens in each hemisphere. Participants therefore had six z-values
(one per ROI) for each analysis. These values represented the average
effect size for the differences in activations between reward and loss
blocks and the relationship with the average reward rate.
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To assess the degree to which these effect sizes deviated from zero,
we fit two intercept-only linear mixed-effects models, predicting mean
z-values per ROI, controlling for age and sex, with random intercepts
per participant to account for repeated measures across hemispheres.
We excluded outlier values that fell three absolute deviations
from the sample's median (one value for the left putamen and one
for the left caudate). Including outliers did not change the pattern of
results.

Examining how reward-driven striatal responses differ by SES
Finally, we tested how SES related to activation level differences between
reward and loss blocks, as well as the degree to which striatal activations
covaried with fluctuations in the average reward rate. To this end, we fit
two linear mixed-effects models. The dependent variables were z-values
reflecting either activation level differences for reward and loss blocks or
the covariance between striatal activations and average reward rate
fluctuations. Both models included SES, hemisphere, and their interac-
tion as independent variables and covariates for age and sex.

Results
We first describe how behavioral responses, specifically RTs and
choices, are influenced by immediately rewarding outcomes and
covary with fluctuations in the average reward rate across time.
We then describe how these behavioral responses differ by SES.
Turning to the neuroimaging data, we then explore the associa-
tion between SES and the volume of the putamen, caudate, and
nucleus accumbens. Furthermore, we examine differences in
striatal activations during reward versus loss blocks and examine
how these activations covary with temporal fluctuations in the
average reward rate. Finally, we focus on disparities in striatal
responses across SES.

Average reward rate fluctuations influence RTs and
postreward pausing
Adolescents responded more slowly after winning than losing
(i.e., postreward pausing: β = 0.02, SE = 0.005, t(262) = 4.68,
p < 0.001; Fig. 2A). Furthermore, trial-by-trial RTs covaried
with fluctuations in the average reward rate, such that a higher
average reward rate led to faster RTs (β =−0.04, SE = 0.02, t(98)
=−2.32, p = 0.022). Fluctuations in the average reward rate also
interacted with immediate feedback to shape RTs: periods of
reward scarcity amplified postreward pausing (reward rate ×
preceeding feedback: β =−0.05, SE = 0.02, t(104) =−3.53, p <
0.001, Fig. 2B), indicating responses to immediate reward
were amplified by a history of low rewards. In fact, postreward
pausing was only observed when rewards were scarce but not
when they were plentiful (effect of preceding feedback when
the reward rate is centered at −1 SD below the mean: β = 0.04,
SE = 0.007, t(100) = 6.23, p < 0.001. Above the mean: β = 0.003,
SE = 0.008, t(104) = 0.43, p = 0.665). These findings show that
adolescents tracked fluctuations in the average reward rate,
which shaped RTs across time and modulated sensitivity and
responses to immediate reward.

Average reward rate fluctuations influence guess switching
Immediate feedback reinforced decisions on subsequent trials:
when adolescents won, they were more likely to repeat their prior
guess on the subsequent trial than if they had lost (β=−0.31, SE =
0.04, z=−7.31, p < 0.001; Fig. 2C). A lower average reward rate
also increased the likelihood of repeating a previously rewarded
guess (i.e., increased win–stay, lose–switch effects (reward rate
× preceding feedback: β= 0.57, SE = 0.12, z= 4.73, p < 0.001;

Figure 2. Immediate reward and the moving average reward rate shape RTs and choices. A, Adolescents responded more slowly after a win than a loss (p< 0.001). B, A lower average reward
rate amplified postreward slowing (interaction, p< 0.001) indicating heightened behavioral responses to reward when rewards were scarce. C, Adolescents were most likely to repeat a guess
when their guess had been rewarded on the previous trial (p< 0.001). D, These “postreward stay” effects were amplified by a low average reward rate (p< 0.001). In all figures, the mean and
within-subject error bars are plotted. The moving average reward rate was divided into low and high average reward rates using a median split for ease of visualization. Note that we model the
average reward rate continuously in all analyses.
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Fig. 2D). Indeed, win–stay effects were most prominent when the
average reward rate was low, indicating a history of low rewards
increased the tendency to stick with a rare rewarding option
(main effect of immediate feedback on choices when the average
reward rate is centered at −1SD below the mean: β = −0.51, SE
= 0.05, z=−9.64, p < 0.001. Above the mean: β = −0.11, SE =
0.06, z=−1.75, p= 0.080). In general, a history of high rewards
(a higher average reward rate) also increased the likelihood of
switching guesses across trials (β= 0.68, SE = 0.15, z= 4.46, p <
0.001), suggesting a greater tendency to make alternative explor-
atory decisions when rewards were abundant. These findings
suggest that a history of low reward increases the tendency to
stick with a previously rewarding option and reduces the ten-
dency to explore alternatives for reward.

Reward rate fluctuations influence postreward pausing more
in higher-SES adolescents
Immediate reward and average reward rate fluctuations
influenced choices similarly regardless of SES (SES × feedback,
β= 0.09, SE = 0.05, z= 1.73, p= 0.084; SES × average reward
rate, β=−0.25, SE = 0.18, z=−1.40, p= 0.161; SES × feedback
type x moving average, β= 0.18, SE = 0.15, z= 1.21, p= 0.225;
Fig. 3A). Additionally, these distinct temporal dimensions of
reward influenced RTs similarly, regardless of SES (SES × feedback:
β=−0.002, SE= 0.005, t(109) =−0.45, p= 0.651; SES × average
reward rate: β= 0.02, SE= 0.02, t(100) = 1.04, p=0.301; Fig. 3A).

However, reward rate fluctuations modulated postreward
pausing more in higher- than lower-SES adolescents (SES ×

feedback type x moving average: β=−0.04, SE = 0.02, t(105) =
−2.54, p = 0.013; Fig. 3B). That is, higher-SES adolescents slowed
more following rare rewards (main effect of SES when the reward
rate is centered at −1SD below the mean to reflect reward scarcity:
β= 0.02, SE = 0.007, t(684) = 2.20, p= 0.028; Fig. 3B). When
rewards were plentiful, higher-SES adolescents slowed less fol-
lowing rewards than lower-SES adolescents (centered at +1SD
above the mean to reflect reward abundance: β=−0.02, SE =
0.008, t(4,949) =−2.05, p= 0.041; Fig. 3B) though neither group
showed significant evidence of postreward pausing when rewards
were plentiful (p’s > 0.087). Interestingly, SES was unrelated to
individual differences in optimal learning rates (β= 0.06, SE =
0.04, t(114) = 1.32, p= 0.189), suggesting that heightened postre-
ward pausing was not driven by a greater tendency to update
expectations in response to new information. These findings sug-
gest that adolescents from lower-SES backgrounds were less
likely to adapt responses to immediate reward based on average
reward rate fluctuations. Analyses reported in our extended anal-
yses on the Open Science Framework (https://osf.io/9vhtw)
demonstrate these results are robust when using education and
income to separately characterize SES.

Lower SES correlates with smaller caudate volumes
Higher SES was associated with larger caudate volumes (β=
96.61, SE = 37.65, t(103) = 2.57, p= 0.012; Fig. 4). In contrast, there
were no significant associations between SES and the volumes of
the putamen (β= 32.78, SE = 49.74, t(103) = 0.66, p= 0.511) or
nucleus accumbens (β= 1.94, SE = 7.26, t(104) = 0.27, p= 0.790).

Figure 3. Reward rate fluctuations modulate postreward pausing more in higher-SES adolescents. A, Reward rate fluctuations influenced choice switching following immediate reward
similarly by SES. B, Reward rate fluctuations modulated postreward pausing more among higher- than lower-SES adolescents. This led to greater RT slowing following rewards when rewards
were scarce among higher-SES adolescents. In all figures, we depict the mean and within-subject error bars. The moving average reward rate and SES were divided into low and high bins using a
median split for ease of visualization. Note that we model these variables continuously in the analyses reported in the paper.
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Moreover, there were no SES × hemisphere interactions in any
ROI (all p’s > 0.590), demonstrating that SES-related differences
in volumes did not differ by hemisphere.

The striatum tracks fluctuations in the average reward rate
Across adolescents, mean activations were larger during reward
than loss blocks in the caudate (β= 0.50, SE = 0.07, t(106) = 6.74,
p < 0.001), putamen (β= 0.61, SE= 0.08, t(106) = 7.83, p< 0.001),
and nucleus accumbens (β= 0.77, SE= 0.08, t(107) = 9.87, p<
0.001; Fig. 5A). Furthermore, striatal activations covaried with
the average reward rate, such that a higher average reward rate
led to greater activations in the caudate (β= 0.77, SE= 0.08, t(105)
= 9.60, p< 0.001), putamen (β=0.66, SE= 0.07, t(105) = 8.94, p<
0.001), and nucleus accumbens (β=1.32, SE= 0.09, t(103) = 14.07,
p< 0.001; Fig. 5B). These findings show that the striatum not
only responds more to reward than loss in general but tracks
moment-by-moment shifts in the average reward rate across time.

Lower SES correlates with reduced striatal responses to reward
Lower SES correlated with smaller activation level differences
between reward and loss blocks in the caudate (β= 0.22, SE =

0.09, t(105) = 2.54, p= 0.013) and putamen (β= 0.25, SE = 0.09,
t(104) = 2.73, p= 0.007) and marginally in the nucleus accumbens
(marginal effect: β= 0.16, SE = 0.09, t(106) = 1.79, p= 0.077;
Fig. 6A). None of these effects differed by hemisphere (SES ×
hemisphere: all ps > 0.29). Furthermore, striatal activations covar-
ied with average reward rate fluctuations more strongly in
higher-SES adolescents in the putamen (β= 0.17, SE = 0.09,
t(104) = 2.02, p= 0.046; Fig. 6B), but not the caudate (β= 0.08,
SE = 0.10, t(104) = 0.88, p= 0.380) or nucleus accumbens
(β = 0.02, SE = 0.11, t(101) = 0.18, p= 0.860). None of these effects
differed by hemisphere (SES × hemisphere: all p’s > 0.21). Of note,
the relationship between SES and reward-driven activations also
did not differ by striatal subregion (SES × subregion interaction:
all p’s > 0.10).

Discussion
We asked how SES in adolescence was related to reward-driven
responses in the brain and behavior. Drawing on influential
models of decision-making (Niv et al., 2006, 2007;
Constantino and Daw, 2015), we examined how choices, RTs,
and striatal activations were shaped by immediate reward

Figure 5. Striatal activations covary with reward and loss blocks and reward rate fluctuations across time. A, Across the sample, activations in the striatum were greater during reward than
loss blocks (p’s < 0.001). B, Moreover, the striatum tracked average reward rate fluctuations across time, even after FDR correction for multiple comparisons across every voxel in the striatum
(ps < 0.001). In A and B, the color bar represents the z-values, and color intensity reflects the strength of the effect.

Figure 4. SES and striatal volumes. SES positively correlated with the volume of the caudate (p= 0.012), but not the putamen or nucleus accumbens (p’s > 0.510). For ease of visualization,
data points reflect the average volume of the left and right hemispheres, but the statistics reported in the text are from models that treat the left and right hemispheres as repeated measures
within participants. Individual data points represent participant-level data, and the gray shading reflects the standard error of the mean.
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outcomes and previous reward history (average reward rate
fluctuations across time). We found that, behaviorally, partici-
pants were more likely to repeat a guess if it had led to a win
(win–stay, lose–switch effects) and responded more slowly after
receiving a reward (postreward pausing). Fluctuations in the
average reward rate also shaped behavior: a higher reward
rate hastened RTs and increased guess switching. Moreover, a
low reward rate increased behavioral sensitivity to immediately
rewarding outcomes; augmenting win–stay, lose–switch effects;
and postreward pausing. Notably, compared to higher-SES ado-
lescents, lower-SES adolescents exhibited reduced postreward
pausing when rewards were scarce. We also observed that
across participants, striatal activations were larger during
reward than loss blocks and covaried with fluctuations in the
average reward rate across time. However, relative to
higher-SES adolescents, lower-SES adolescents displayed
reduced activations during reward relative to loss blocks in
the caudate and putamen and marginally in the nucleus accum-
bens. In addition, putamen activations tracked average reward
rate fluctuations less in lower-SES adolescents. These findings
show that the striatum tracks average reward rate fluctuations,
which shape choices and RTs (Niv et al., 2006, 2007;Wang et al.,
2013, 2021; Hamid et al., 2016). They also link lower SES in ado-
lescence to reduced reward sensitivity, both in the brain and
behavior.

We found that adolescents tracked fluctuations in the average
reward rate across time, which influenced decisions and RTs.
When rewards were abundant, individuals were more likely to
switch choices across trials. These findings align with studies in

human adults (Niv et al., 2007; Constantino and Daw, 2015;
Sukumar et al., 2023) and support theories of decision-making
(Constantino and Daw, 2015; Sukumar et al., 2023). These theo-
ries argue that when the average environmental reward rate is
lower than an option's perceived value, it is rational to “stay”
with a rewarding option due to the limited prospects of finding
rewards elsewhere. Conversely, when the environmental reward
rate is higher than the perceived value of an option, it makes sense
to switch to exploring alternative sources of reward. It is possible,
then, that adolescents used the average reward rate as a threshold
for whether to switch or stay with a previous choice. Future
research could examine how the tendency to track average
reward rate fluctuations develops—and whether adolescents—
given their heightened sensitivity to reward (Galvan et al.,
2006; Cohen et al., 2010; Galvan, 2010; Davidow et al., 2016)
might be even more attuned to fluctuations in the average reward
rate across time than adults.

A higher average reward rate also covaried with faster RTs.
This finding is consistent with research in human adults
(Beierholm et al., 2013; Otto and Daw, 2019) and supports theo-
ries arguing that fluctuations in the average reward rate shape the
cost time (Niv et al., 2006, 2007). That is, when rewards are abun-
dant, action delays are presumably more costly because one for-
feits relatively more potential rewards, incentivizing faster
responses. Interestingly, other researchers have theorized that
rewards also govern the opportunity cost engaging effort and sus-
taining attention (Kurzban et al., 2013; Esterman et al., 2016;
Massar et al., 2016; Esterman and Rothlein, 2019; Otto and
Daw, 2019; Lin et al., 2022) raising the possibility that average

Figure 6. Lower SES correlates with reduced striatal activations to reward. A, Lower SES correlated with less activation differences between reward and loss blocks in the caudate and putamen
and marginally in the nucleus accumbens. B, The relationship between striatal activations and average reward rate fluctuations was stronger for higher- than lower-SES adolescents in the
putamen (p= 0.046), but not in the caudate or nucleus accumbens (p’s > 0.37). For ease of visualization, individual data points reflect mean z-values across the left and right hemispheres.
Statistics reported in the text model the left and right hemispheres separately as repeated measures. Individual data points represent participant data, and the gray shading reflects the standard
error of the mean.
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reward rate fluctuations shape diverse aspects of cognition–such
as fluctuations in attention (Decker and Duncan, 2020; A. Decker
et al., 2023; AL. Decker et al., 2023). Our findings therefore not
only support theories linking reward rate fluctuations to motiva-
tion and decision-making and extend these ideas to human ado-
lescents but raise questions about the influence of reward rate
fluctuations on other aspects of cognition.

Adolescents were also responsive to immediately rewarding
outcomes, in line with previous research (Reynolds et al., 2001;
Hamid et al., 2016): they were most likely to repeat a previous
choice if it had led to a reward on the prior trial and responded
more slowly after a reward outcome, a phenomenon known as
“postreward pausing” (Felton and Lyon, 1966; Crossman, 1968;
McMillan, 1971; Wallace and Mulder, 1973; Schlinger et al.,
2008; Williams et al., 2011). Notably, these effects were amplified
by a lower average reward rate. Our finding adds to a growing
body of research suggesting the background average reward
rate modulates sensitivity to immediate reward. Indeed, in ani-
mals and humans, postreward pausing is prolonged when
rewards are scarce (Schlinger et al., 2008). Furthermore, fewer
recent rewards and lower tonic dopamine amplify phasic dopa-
mine firing (Hamid et al., 2016)—a finding that potentially pro-
vides a neurobiological explanation for the increased reward
responsivity we observed here when rewards were scarce.
Slower responses after unexpected reward could also reflect sur-
prise due to the infrequency of the event (A. Decker et al., 2020)
or heightened response caution that facilitated more deliberate
decision-making (Schlinger et al., 2008, p. 50). Altogether, this
finding shows that average reward rate fluctuations influenced
responses to immediate outcomes, which shaped choices and
RTs. When adolescents tune into the average environmental
reward rate, they may make more adaptive decisions according
to the overall rewards available in the environment.

We also observed that the extent of RT slowing after rare
rewards varied by SES. Adolescents from higher-SES back-
grounds showed greater postreward pausing than lower-SES
adolescents when rewards were scarce. This finding could reflect
greater attunement to reward rate fluctuations among
higher-SES adolescents, which would be expected to increase
the saliency of receiving a rare reward when the reward rate
was low. However, exploratory analyses showed that SES did
not correlate with learning rates—the tendency to update the
average reward rate in response to new outcomes. Thus, greater
postreward pausing may instead reflect a greater responsivity to
rewards in reward-scarce contexts specifically, rather than a
general tendency to more readily update the average reward rate.

Interestingly, reward rate fluctuations covaried with striatal
activations in the caudate, putamen, and nucleus accumbens,
such that a higher reward rate led to greater activations in these
regions. These findings are consistent with animals studies show-
ing that tonic dopamine fluctuations in the striatum track the
average reward rate and in doing so shape motivational vigor
and decision-making (Wang et al., 2013, 2021; Hamid et al.,
2016), and, as far as we know, this is the first human fMRI study
demonstrating this relationship.

Our results extend prior findings linking lower SES to dimin-
ished reward sensitivity in neocortical regions like the anterior
cingulate cortex (Palacios-Barrios et al., 2021) and parietal cortex
(White et al., 2022). Indeed, we observed that the extent of
reward-driven activations in the striatum differed by SES.
Higher-SES adolescents showed greater reward-driven activa-
tions than lower-SES adolescents in the putamen, caudate, and
marginally in the nucleus accumbens. Moreover, putamen

activations tracked average reward rate fluctuations less in
lower-SES adolescents. Notably, prior studies employed incre-
mental learning tasks in which adolescents learned the value of
cues in predicting outcomes over time. Our focus on a reward
task that did not involve learnable cue–outcome contingencies
broadens the literature by showing that reduced reward sensitiv-
ity is even observed when eliminating learning demands.

Our findings support proposals that lower-SES environments
reduce reward sensitivity (Seligman, 1972). Past literature sug-
gests that chronic stress diminishes the belief that actions have
consequences rendering individuals less motivated to pursue
rewarding outcomes (Seligman, 1972). It is therefore possible
that chronic stress and reduced perceived control, which are
more common among lower-SES individuals (Hackman and
Farah, 2009; Hackman et al., 2010; McLaughlin et al., 2014;
Farah, 2018) mediated the effects we observed here. Targeted
research that employs direct measures of stress could directly
test this mechanism.

The present findings offer insights into why cognitive perfor-
mance (Noble et al., 2007) and emotional well-being (Reiss,
2013) are often reduced in lower-SES adolescents. Reward sensi-
tivity plays a vital role in many aspects of cognition, influencing
everything from the ability to learn important associations
(Davidow et al., 2016) to the ability to remain attentive to impor-
tant events (Shenhav et al., 2013; Esterman and Rothlein, 2019).
Rewards boost motivation (Schultz, 1993;Westbrook and Braver,
2016; Frömer et al., 2021; Westbrook et al., 2021) and support
success in short and long-term endeavors, such as academic
and workplace pursuits. Disparities in reward sensitivity, there-
fore, may contribute to disparities in learning, attentional perfor-
mance, and motivation. Given the intimate link between reward
sensitivity and emotional well-being, reduced reward sensitivity
may contribute to higher rates of depression (Reiss, 2013;
Auerbach et al., 2022) and lower life satisfaction observed in
lower-SES groups (Kahneman and Deaton, 2010). On a broader
level, these insights stress the importance of socioeconomic pol-
icies (Farah, 2018) aimed at reducing the burdens of poverty to
foster cognitive and emotional well-being in society.

Data Availability Statement
Code and data can be found at the following link: https://osf.io/
pqtby/.
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